On étudie quelques classes d’espaces localement convexes avec quotients séparés et non-complets et en conséquence on obtient des résultats de -complétude. En particulier, l’espace de L. Schwartz n’est pas -complet, où représente un ensemble non-vide de l’espace euclidien .
Certain classes of locally convex space having non complete separated quotients are studied and consequently results about -completeness are obtained. In particular the space of L. Schwartz is not -complete where denotes a non-empty open set of the euclidean space .
@article{AIF_1977__27_4_29_0, author = {Valdivia, Manuel}, title = {The space $D(U)$ is not $B\_r$-complete}, journal = {Annales de l'Institut Fourier}, volume = {27}, year = {1977}, pages = {29-43}, doi = {10.5802/aif.671}, mrnumber = {57 \#17182}, zbl = {0361.46005}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1977__27_4_29_0} }
Valdivia, Manuel. The space $D(U)$ is not $B_r$-complete. Annales de l'Institut Fourier, Tome 27 (1977) pp. 29-43. doi : 10.5802/aif.671. http://gdmltest.u-ga.fr/item/AIF_1977__27_4_29_0/
[1] Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., No. 16 (1966). | Zbl 0123.30301
,[2] Topological Vector Spaces I. Berlin-Heidelberg-New York, Springer 1969. | Zbl 0179.17001
,[3] Nuclear locally convex spaces. Berlin-Heidelberg-New York, Springer 1972. | MR 50 #2853 | Zbl 0308.47024
,[4] Completeness and open mapping theorem, Bull. Soc. Math. France, 86 (1958), 41-74. | Numdam | MR 21 #4345 | Zbl 0082.32502
,[5] On B-complete topological vector groups, Studia Math., 31 (1968), 295-306.
,[6] The space D is not hereditarily complete, Izv. Akad. Nauk SSSR, Ser. Math., 35 (3) (1971), 686-696; Math. USSR Izvestija, 5 (3) (1971), 696-710. | Zbl 0249.46020
,[7] On countable locally convex direct sums, Arch. d. Math., XXVI, 4 (1975), 407-413. | MR 52 #1241 | Zbl 0312.46014
,[8] On Br-completeness, Ann. Inst. Fourier, Grenoble 25, 2 (1975), 235-248. | Numdam | MR 53 #3634 | Zbl 0301.46004
,[9] Mackey convergence and the closed graph theorem, Arch. d. Math., XXV, 6 (1974), 649-656. | MR 51 #11052 | Zbl 0297.46006
,[10] The space of distributions D′(Ω) is not Br-complete, Math. Ann., 211 (1974), 145-149. | MR 51 #6406 | Zbl 0288.46033
,