Une algèbre booléenne possède la propriété (I) si étant données les suites dans avec pour tout , il existe un élément de tel que pour tout . Soit une algèbre ayant la propriété (I). On démontre que si ( un espace de Banach ) est une suite de mesures fortement additives telle que existe pour chaque , alors définit une mesure fortement additive et les sont uniformément fortement additives. Le théorème de Vitali-Hahn-Saks (VHS) pour des mesures fortement additives dans un espace Banach est déduit du théorème de Nikodym. Une preuve du théorème (VHS) pour des mesures à valeurs dans un groupe est donnée.
A Boolean algebra has the interpolation property (property (I)) if given sequences , in with for all , there exists an element in such that for all . Let denote an algebra with the property (I). It is shown that if ( a Banach space) is a sequence of strongly additive measures such that exists for each , then defines a strongly additive map from to and the are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive -valued measures defined on is derived from the Nikodym boundedness theorem. A proof of the VHS theorem for group-valued measures is given.
@article{AIF_1976__26_4_99_0, author = {Faires, Barbara T.}, title = {On Vitali-Hahn-Saks-Nikodym type theorems}, journal = {Annales de l'Institut Fourier}, volume = {26}, year = {1976}, pages = {99-114}, doi = {10.5802/aif.633}, mrnumber = {56 \#572}, zbl = {0309.46041}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1976__26_4_99_0} }
Faires, Barbara T. On Vitali-Hahn-Saks-Nikodym type theorems. Annales de l'Institut Fourier, Tome 26 (1976) pp. 99-114. doi : 10.5802/aif.633. http://gdmltest.u-ga.fr/item/AIF_1976__26_4_99_0/
[1] Convergent sequences of finitely additive measures, Pacific J. Math., 11 (1961), 395-404. | MR 25 #1255 | Zbl 0171.29903
,[2] On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), 151-164. | MR 22 #5872 | Zbl 0084.09805
and ,[3] On finitely additive vector measures, Proc. Nat. Acad. Sci., U.S.A., 67 (1970), 1294-1298. | MR 42 #4697 | Zbl 0216.09602
and ,[4] The Vitali-Hahn-Saks and Nikodym theorems for additive set functions, Bull. Amer. Math. Soc., 76 (1970), 1297-1298. | MR 41 #8625 | Zbl 0202.33802
,[5] The Vitali-Hahn-Saks and Nikodym theorems, Bull. Amer. Math. Soc., 79 (1973), 758-760. | MR 47 #5216 | Zbl 0264.28006
,[6] Applications of weak compactness and bases to vector measures and vectoriel integration, Revue Roum. Math., 18 (1973), 211-224. | MR 47 #5590 | Zbl 0267.46035
,[7] Grothendieck spaces and vector measures, Vector and Operator Valued Measures and Applications, Academic Press, New York, 1973, 97-108. | MR 49 #3538 | Zbl 0316.46009
,[8] On vector measures, Trans. Amer. Math. Soc., 198 (1974), 253-271. | MR 50 #2912 | Zbl 0297.46034
and ,[9] Convergence and boundedness of measures on non-sigma complete algebras, preprint.
, and ,[10] Vector measures, Notes prepared at Kent State University and the University of Illinois, 1973.
and ,[11] Topological rings of sets, continuous set functions, integration II, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astronom. et Phys., 20 (1972), 277-286. | Zbl 0249.28005
,[12] Linear Operators, Part I, Interscience, New York, 1958. | MR 22 #8302 | Zbl 0084.10402
and ,[13] Criteria of compactness in function spaces, Amer. J. Math., 74 (1952), 168-186. | Zbl 0046.11702
,[14] Über Folgen linearer Operationen, Monatsh. für Math. und Physik, 32 (1922), 3-88. | JFM 48.0473.01
,[15] Sur les familles bornées de fonctions parfaitement additives d'ensemble abstrait, Monatsh. für Math. und Physik, 40 (1933), 418-426. | JFM 59.0270.02 | Zbl 0008.25002
,[16] Sur les suites convergentes de fonctions parfaitement additives d'ensemble abstrait, Monatsh, für Math. und Physik, 40 (1933), 427-432. | JFM 59.0270.03 | Zbl 0008.25003
,[17] Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astr. et Phys., 10 (1962), 641-648. | MR 26 #6785 | Zbl 0107.32504
,[18] Decomposition of additive set functions, Duke Math. J., 10 (1943), 653-665. | MR 5,232c | Zbl 0063.06492
,[19] On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math., 37 (1970), 13-36. | MR 42 #5015 | Zbl 0227.46027
,[20] Addition to the note on some functionals, Trans. Amer. Math. Soc., 35 (1933), 967-974. | JFM 59.0409.02 | MR 1501701 | Zbl 0008.15104
,[21] Measures on F-spaces, Trans. Amer. Math. Soc., 133 (1968), 267-280. | MR 37 #1976 | Zbl 0189.44902
,[22] Applications of a lemma of Rosenthal to vector measures and series in Banach spaces, Preprint.
.,[23] Sull'integrazione per serie, Rend. del Circolo Mat. di Palermo, 23 (1907), 137-155. | JFM 38.0338.01
,[24] On Vitali-Hahn-Saks Type Theorems, Bull. Amer. Math. Soc., 80 (1974), 670-674. | MR 51 #13681 | Zbl 0287.46056
,