Soit , où la suite est le réarrangement décroissant de la suite . Pour toute fonction positive, convexe et croissante, on a . Dans le cas particulier , , on obtient l’inégalité de Littlewood .
Let , where the are the numbers rearranged so that . Then for any convex increasing , . The special case , , gives an equivalent of Littlewood.
@article{AIF_1976__26_2_29_0,
author = {Montgomery, Hugh L.},
title = {A note on rearrangements of Fourier coefficients},
journal = {Annales de l'Institut Fourier},
volume = {26},
year = {1976},
pages = {29-34},
doi = {10.5802/aif.612},
mrnumber = {53 \#11292},
zbl = {0318.42009},
language = {en},
url = {http://dml.mathdoc.fr/item/AIF_1976__26_2_29_0}
}
Montgomery, Hugh L. A note on rearrangements of Fourier coefficients. Annales de l'Institut Fourier, Tome 26 (1976) pp. 29-34. doi : 10.5802/aif.612. http://gdmltest.u-ga.fr/item/AIF_1976__26_2_29_0/
[1] , On the upper and lower majorant properties of Lp(G), Quart. J. Math. (Oxford), (2), 24 (1973), 119-128. | MR 47 #9172 | Zbl 0268.43003
[2] , II, Integral means, univalent functions and circular symmetrizations, Acta Math., 133 (1974), 139-169. | MR 54 #5456 | Zbl 0315.30021
[3] and , Notes on the theory of series (XIII) : Some new properties of Fourier constants, J. London Math. Soc., 6 (1931), 3-9. | JFM 57.0315.01 | Zbl 0001.13504
[4] and , A new proof of a theorem on rearrangements, J. London math. Soc., 23 (1949), 163-168. | MR 10,448b | Zbl 0034.04301
[5] , Some inequalities of Littlewood and a problem on rearrangements, J. London Math. Soc., 36 (1961), 362-376. | MR 24 #A1565 | Zbl 0138.28702
[6] , On a theorem of Paley, J. London Math. Soc., 29 (1954), 387-395. | MR 16,126e | Zbl 0058.05502
[7] , On inequalities between f and f⋆, J. London Math. Soc., 35 (1960), 352-365. | MR 24 #A799 | Zbl 0099.05403
[8] , Topics in multiplicative number theory, Lecture Notes in Mathematics, Springer-Verlag, Vol. 227, (1971), 187 pp. | MR 49 #2616 | Zbl 0216.03501
[9] , Some theorems on orthogonal functions, Studia Math., 3 (1931), 226-238. | JFM 57.0335.02 | Zbl 0003.35201
[10] , Majorant problems for Fourier coefficients, to appear. | Zbl 0302.42004
[11] , Trigonometric series, Second Edition, Cambridge University Press, 1968.