Soit , où la suite est le réarrangement décroissant de la suite . Pour toute fonction positive, convexe et croissante, on a . Dans le cas particulier , , on obtient l’inégalité de Littlewood .
Let , where the are the numbers rearranged so that . Then for any convex increasing , . The special case , , gives an equivalent of Littlewood.
@article{AIF_1976__26_2_29_0, author = {Montgomery, Hugh L.}, title = {A note on rearrangements of Fourier coefficients}, journal = {Annales de l'Institut Fourier}, volume = {26}, year = {1976}, pages = {29-34}, doi = {10.5802/aif.612}, mrnumber = {53 \#11292}, zbl = {0318.42009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1976__26_2_29_0} }
Montgomery, Hugh L. A note on rearrangements of Fourier coefficients. Annales de l'Institut Fourier, Tome 26 (1976) pp. 29-34. doi : 10.5802/aif.612. http://gdmltest.u-ga.fr/item/AIF_1976__26_2_29_0/
[1] On the upper and lower majorant properties of Lp(G), Quart. J. Math. (Oxford), (2), 24 (1973), 119-128. | MR 47 #9172 | Zbl 0268.43003
,[2] II, Integral means, univalent functions and circular symmetrizations, Acta Math., 133 (1974), 139-169. | MR 54 #5456 | Zbl 0315.30021
,[3] Notes on the theory of series (XIII) : Some new properties of Fourier constants, J. London Math. Soc., 6 (1931), 3-9. | JFM 57.0315.01 | Zbl 0001.13504
and ,[4] A new proof of a theorem on rearrangements, J. London math. Soc., 23 (1949), 163-168. | MR 10,448b | Zbl 0034.04301
and ,[5] Some inequalities of Littlewood and a problem on rearrangements, J. London Math. Soc., 36 (1961), 362-376. | MR 24 #A1565 | Zbl 0138.28702
,[6] On a theorem of Paley, J. London Math. Soc., 29 (1954), 387-395. | MR 16,126e | Zbl 0058.05502
,[7] On inequalities between f and f⋆, J. London Math. Soc., 35 (1960), 352-365. | MR 24 #A799 | Zbl 0099.05403
,[8] Topics in multiplicative number theory, Lecture Notes in Mathematics, Springer-Verlag, Vol. 227, (1971), 187 pp. | MR 49 #2616 | Zbl 0216.03501
,[9] Some theorems on orthogonal functions, Studia Math., 3 (1931), 226-238. | JFM 57.0335.02 | Zbl 0003.35201
,[10] Majorant problems for Fourier coefficients, to appear. | Zbl 0302.42004
,[11] Trigonometric series, Second Edition, Cambridge University Press, 1968.
,