On montre que pour tout espace de Banach réticulé, les deux propriétés suivantes sont équivalentes :
1) est faiblement séquentiellement complet.
2) Toute forme linéaire -mesurable sur le dual topologique est continue.
The equivalence of the two following properties is proved for every Banach lattice :
1) is weakly sequentially complete.
2) Every -Borel measurable linear functional on is -continuous.
@article{AIF_1976__26_2_25_0, author = {Wickstead, A. W.}, title = {A characterization of weakly sequentially complete Banach lattices}, journal = {Annales de l'Institut Fourier}, volume = {26}, year = {1976}, pages = {25-28}, doi = {10.5802/aif.611}, mrnumber = {53 \#14080}, zbl = {0295.46017}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1976__26_2_25_0} }
Wickstead, A. W. A characterization of weakly sequentially complete Banach lattices. Annales de l'Institut Fourier, Tome 26 (1976) pp. 25-28. doi : 10.5802/aif.611. http://gdmltest.u-ga.fr/item/AIF_1976__26_2_25_0/
[1] Borel structures in groups and semi-groups, Math. Scand., 28 (1971) 124-128. | MR 46 #7436 | Zbl 0217.08502
,[2] Borel structures and a topological zero-one law, Math. Scand., 29 (1971), 245-255. | MR 47 #2021 | Zbl 0234.54024
,[3] Abstract Kothe spaces II, Proc. Cam. Phil. Soc., 63 (1967), 951-956. | MR 35 #7107 | Zbl 0179.17005
,[4] Notes on Banach function spaces, Nederl. Akad. Wetensch. Proc. Ser. A., 67 (1964) (a) 507-518, (b) 519-529. | Zbl 0147.11001
and ,[5] Zur schwachen Kompaktheit in Banachverbanden, Math. Z.j 134 (1973), 303-315. | MR 48 #9341 | Zbl 0268.46010
,