Soit un module libre sur un anneau noethérien. Pour , soit l’idéal engendré par les coefficients de . Si est un élément de avec et si , il existe tels que .
Ceci généralise un lemme de de Rham sur la division des formes (Comment. Math. Helv., 28 (1954)) et on en obtient quelques applications à l’étude des singularités.
Let be a free module over a noetherian ring. For , let be the ideal generated by coefficients of . For an element with , if , there exists such that .
This is a generalization of a lemma on the division of forms due to de Rham (Comment. Math. Helv., 28 (1954)) and has some applications to the study of singularities.
@article{AIF_1976__26_2_165_0, author = {Saito, Kyoji}, title = {On a generalization of de Rham lemma}, journal = {Annales de l'Institut Fourier}, volume = {26}, year = {1976}, pages = {165-170}, doi = {10.5802/aif.620}, mrnumber = {54 \#1276}, zbl = {0338.13009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1976__26_2_165_0} }
Saito, Kyoji. On a generalization of de Rham lemma. Annales de l'Institut Fourier, Tome 26 (1976) pp. 165-170. doi : 10.5802/aif.620. http://gdmltest.u-ga.fr/item/AIF_1976__26_2_165_0/
[1] Sur la division de formes et de courants par une forme linéaire, Comment. Math. Helv., 28 (1954), 346-352. | MR 16,402d | Zbl 0056.31601
,[2] Calcul algébrique de la monodromie, Société Mathématique de France, Astérisque, 7 et 8 (1973), 195-212. | MR 51 #12845 | Zbl 0294.14005
,