On caractérise les noyaux de convolution sur un espace homogène où est un sous-groupe compact de , qui satisfont au principe complet du maximum. Comme cas particulier on obtient le résultat de Deny, mais sous une hypothèse plus forte, pour les groupes abéliens.
The convolution kernels on a homogeneous space , where is a compact sub-group of , that satisfy the complete maximum principle are characterized.
Deny’s result for abelian groups , but with a stronger hypothesis, is a special case.
@article{AIF_1975__25_3-4_519_0, author = {Taylor, John C.}, title = {On Deny's characterization of the potential kernel for a convolution Feller semi-group}, journal = {Annales de l'Institut Fourier}, volume = {25}, year = {1975}, pages = {519-537}, doi = {10.5802/aif.596}, mrnumber = {53 \#5912}, zbl = {0292.43018}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1975__25_3-4_519_0} }
Taylor, John C. On Deny's characterization of the potential kernel for a convolution Feller semi-group. Annales de l'Institut Fourier, Tome 25 (1975) pp. 519-537. doi : 10.5802/aif.596. http://gdmltest.u-ga.fr/item/AIF_1975__25_3-4_519_0/
[1] Noyaux de Convolution de Hunt et Noyaux Associés à une Famille Fondamentale, Ann. Inst. Fourier, 12 (1962), 643-667. | Numdam | MR 25 #3189 | Zbl 0101.08302
,[2] Probability and Potentials, Blaisdell Publishing Company, Waltham, Mass., 1966. | MR 34 #5119 | Zbl 0138.10401
,[3] On the existence of sub-Markovian resolvents, Invent. Math., 17 (1972), 85-93. | MR 49 #9961 | Zbl 0229.31014
,[4] Ray Processes on Locally Compact Spaces, Math. Annalen. 208 (1974), 233-248. | MR 51 #4424 | Zbl 0266.31006
,[5] On the existence of resolvents, Séminaire de probabilité VII, Université de Strasbourg (1971-1972), Springer, Lecture Notes, 321, 291-300, Berlin, 1973. | Numdam | Zbl 0265.60010
,