Le but de ce travail est de formuler et de résoudre un problème de frontière libre pour l’équation de Poisson à deux variables.
Le problème consiste à déterminer un domaine et une fonction définie dans de façon que, dans soit satisfaite l’équation et sur le bord de soient satisfaites en même temps une condition de Dirichlet et une condition du type de Neumann.
La méthode de résolution consiste à réduire ce problème à l’étude d’une inéquation variationnelle.
Avec des conditions convenables on montre qu’il y a une solution unique; on démontre enfin que la courbe est régulière et étoilée.
This paper is devoted to the formulation and solution of a free boundary problem for the Poisson equation in the plane. The object is to seek a domain and a function defined in satisfying the given differential equation together with both Dirichlet and Neumann type data on the boundary of . The Neumann data are given in a manner which permits reformulation of the problem as a variational inequality. Under suitable hypotheses about the given data, it is shown that there exists a unique solution pair , . The second part of the paper is devoted to demonstrating that is a smooth starshaped curve.
@article{AIF_1975__25_3-4_323_0, author = {Stampacchia, Guido and Kinderlehrer, D.}, title = {A free boundary value problem in potential theory}, journal = {Annales de l'Institut Fourier}, volume = {25}, year = {1975}, pages = {323-344}, doi = {10.5802/aif.587}, mrnumber = {58 \#22609}, zbl = {0303.31003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1975__25_3-4_323_0} }
Stampacchia, Guido; Kinderlehrer, D. A free boundary value problem in potential theory. Annales de l'Institut Fourier, Tome 25 (1975) pp. 323-344. doi : 10.5802/aif.587. http://gdmltest.u-ga.fr/item/AIF_1975__25_3-4_323_0/
[1] Su un problema di frontiera libera connesso a questioni di idraulica, Ann. di Mat. pura e appl., IV, 92 (1972), 107-127. | MR 53 #12207 | Zbl 0258.76069
,[2] On a filtration problem through a porous medium, Ann. di Mat. pura e appl., C (1974), 191-209. | MR 50 #9144 | Zbl 0298.76049
,[3] Solutions with compact support of variational inequalities, Usp. Mat. Nauk, XXIX, 2 (176) (1974), 103-108. | MR 58 #1576 | Zbl 0304.35036
,[4] The smoothness of solutions to nonlinear variational inequalities, Indiana U. Math. J., 23,9 (1974), 831-844. | MR 50 #13881 | Zbl 0278.49011
and ,[5] Une nouvelle méthode pour l'étude d'écoulements stationnaires, CRAS, 276 (1973), 129-132. | MR 47 #4521 | Zbl 0246.35021
and ,[6] Résolution d'un problème de Stefan (Fusion d'un bloc de glace à zéro degré), CRAS, 276 (1973), 1461-1463. | MR 48 #6688 | Zbl 0258.35037
,[7] On the regularity of the solution of a second order variational inequality, Boll. U.M.I., 6 (1972), 312-315. | MR 47 #7197 | Zbl 0261.49021
,[8] The free boundary determined by the solution to a differential equation, to appear in Indiana Journal. | Zbl 0336.35031
,[9] On the nature of the boundary separating two domains with different regimes, to appear.
,[10] On the regularity of the solution of a variational inequality, C.P.A.M., 22 (1969), 153-188. | MR 40 #816 | Zbl 0167.11501
and ,[11] Variational Inequalities, C.P.A.M., 20 (1967), 493-519. | MR 35 #7178 | Zbl 0152.34601
and ,[12] On the filtration of a fluid through a porous medium with variable cross section, Usp. Mat. Nauk., XXIX, 4 (178) (1974), 89-101. | MR 54 #1853 | Zbl 0312.76058
,