Nous montrons qu’un théorème de Rudin, concernant la somme des sous-espaces fermés dans un espace de Banach, a une réciproque. Au moyen d’un exemple nous montrons que ce résultat a le caractère d’être le meilleur possible.
We show that a theorem of Rudin, concerning the sum of closed subspaces in a Banach space, has a converse. By means of an example we show that the result is in the nature of best possible.
@article{AIF_1975__25_2_213_0, author = {Stegenga, David}, title = {A note on spaces of type $H^\infty +C$}, journal = {Annales de l'Institut Fourier}, volume = {25}, year = {1975}, pages = {213-217}, doi = {10.5802/aif.561}, mrnumber = {52 \#11546}, zbl = {0301.46041}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1975__25_2_213_0} }
Stegenga, David. A note on spaces of type $H^\infty +C$. Annales de l'Institut Fourier, Tome 25 (1975) pp. 213-217. doi : 10.5802/aif.561. http://gdmltest.u-ga.fr/item/AIF_1975__25_2_213_0/
[1] Past and future, Math. Scand., 21 (1967), 5-16. | Zbl 0241.60029
and ,[2] Spaces of Type H∞ + C, Annales de l'Institut Fourier, 25, 1 (1975), 99-125. | Numdam | Zbl 0295.46080
,[3] Projections on invariant subspaces, Proc. AMS, 13 (1962), 429-432. | Zbl 0105.09504
,[4] Generalized interpolation in H∞, Trans. Amer. Math. Soc., 127 (1967), 179-203. | Zbl 0145.39303
,[5] Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc., 144 (1969), 241-269. | Zbl 0188.45002
,