Adhérence faible étoile d'algèbres de fractions rationnelles
Chaumat, Jacques
Annales de l'Institut Fourier, Tome 24 (1974), p. 93-120 / Harvested from Numdam

Étant donnés un compact K du plan complexe, et une mesure non nulle sur K, on étudie H (μ), l’adhérence dans L (μ), pour la topologie σ(L (μ),L 1 (μ)), de l’algèbre des fractions rationnelles d’une variable complexe, à pôles hors de K. Le résultat principal obtenu est qu’il existe un sous-ensemble E μ de K, éventuellement vide, mesurable pour la mesure de Lebesgue plane, et une mesure μ s , éventuellement nulle, absolument continue par rapport à la mesure μ, tels que : H (μ) soit isométriquement isomorphe à H (λ E μ )L (μ s ), où λ E μ désigne la restriction à E μ de la mesure de Lebesgue plane.

Let K be a compact subset of the complex plane, and μ a measure on K; we study H (μ), the weak star closure in L (μ), of the algebra of rational functions with poles off K. The main result is the following: there exists a subset E μ of K, possibly empty, measurable with respect to the Lebesgue measure, and a measure μ s , possibly equal to zero, absolutely continuous with respect to the measure μ, such that: H (μ) is isometrically isomorphic to H (λ E μ )L (μ s ), with λ E μ the restriction to E μ of the Lebesgue measure.

@article{AIF_1974__24_4_93_0,
     author = {Chaumat, Jacques},
     title = {Adh\'erence faible \'etoile d'alg\`ebres de fractions rationnelles},
     journal = {Annales de l'Institut Fourier},
     volume = {24},
     year = {1974},
     pages = {93-120},
     doi = {10.5802/aif.533},
     mrnumber = {53 \#14141},
     zbl = {0287.46065},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_1974__24_4_93_0}
}
Chaumat, Jacques. Adhérence faible étoile d'algèbres de fractions rationnelles. Annales de l'Institut Fourier, Tome 24 (1974) pp. 93-120. doi : 10.5802/aif.533. http://gdmltest.u-ga.fr/item/AIF_1974__24_4_93_0/

[B1] A. Browder, Point derivations on function algebras, J. Functional Analysis, 1 (1967), 22-27. | MR 35 #2144 | Zbl 0152.32701

[B2] L. Brown, A. Shields and K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc., 96 (1960), 162-183. | MR 26 #332 | Zbl 0096.05103

[D1] A. M. Davie, Bounded Limits of analytic functions, Proc. Amer. Math. Soc., 32 (1972), 127-133. | MR 45 #2148 | Zbl 0234.30040

[D2] A. M. Davie, Bounded Approximation and Dinchlet Sets, J. Functionnal Analysis, 6 (1970), 460-467. | MR 43 #925 | Zbl 0205.42302

[D3] N. Dunford and J. Schwartz, Linear operator. Part. I : General theory. Interscience, New York, 1958. | Zbl 0084.10402

[G1] T. W. Gamelin, Uniform algebras. Prentice Hall Series in Modern Analysis, 1969. | Zbl 0213.40401

[G2] T. W. Gamelin and J. Garnett, Bounded approximation by rational functions (à paraître).

[G3] T. W. Gamelin and J. Garnett, Pointwise bounded approximation and Dirichlet algebras, J. Functional Analysis, 8 (1971), 360-404. | MR 45 #4153 | Zbl 0223.30056

[G4] J. Garnett, Analytic capacity and measure, Lecture Notes in Mathematics, 297, Springer-Verlag. | MR 56 #12257 | Zbl 0253.30014

[L] G. M. Leibowitz, Lectures on Complex Functions Algebras. Scott Foresman and Co (1970), 64-67. | MR 55 #1072 | Zbl 0219.46037

[S1] D. Sarason, Weak star density of polynomials, J. Reine Angew. Math., 252 (1972), 1-15. | MR 45 #4156 | Zbl 0242.46023

[S2] D. Sarason, A remark on the weak star topology of l∞, Studia Math., 30 (1968), 355-359. | MR 38 #2581 | Zbl 0159.18001