Étant donnés un compact du plan complexe, et une mesure non nulle sur , on étudie , l’adhérence dans , pour la topologie , de l’algèbre des fractions rationnelles d’une variable complexe, à pôles hors de . Le résultat principal obtenu est qu’il existe un sous-ensemble de , éventuellement vide, mesurable pour la mesure de Lebesgue plane, et une mesure , éventuellement nulle, absolument continue par rapport à la mesure , tels que : soit isométriquement isomorphe à , où désigne la restriction à de la mesure de Lebesgue plane.
Let be a compact subset of the complex plane, and a measure on ; we study , the weak star closure in , of the algebra of rational functions with poles off . The main result is the following: there exists a subset of , possibly empty, measurable with respect to the Lebesgue measure, and a measure , possibly equal to zero, absolutely continuous with respect to the measure , such that: is isometrically isomorphic to , with the restriction to of the Lebesgue measure.
@article{AIF_1974__24_4_93_0, author = {Chaumat, Jacques}, title = {Adh\'erence faible \'etoile d'alg\`ebres de fractions rationnelles}, journal = {Annales de l'Institut Fourier}, volume = {24}, year = {1974}, pages = {93-120}, doi = {10.5802/aif.533}, mrnumber = {53 \#14141}, zbl = {0287.46065}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1974__24_4_93_0} }
Chaumat, Jacques. Adhérence faible étoile d'algèbres de fractions rationnelles. Annales de l'Institut Fourier, Tome 24 (1974) pp. 93-120. doi : 10.5802/aif.533. http://gdmltest.u-ga.fr/item/AIF_1974__24_4_93_0/
[B1] Point derivations on function algebras, J. Functional Analysis, 1 (1967), 22-27. | MR 35 #2144 | Zbl 0152.32701
,[B2] On absolutely convergent exponential sums, Trans. Amer. Math. Soc., 96 (1960), 162-183. | MR 26 #332 | Zbl 0096.05103
, and ,[D1] Bounded Limits of analytic functions, Proc. Amer. Math. Soc., 32 (1972), 127-133. | MR 45 #2148 | Zbl 0234.30040
,[D2] Bounded Approximation and Dinchlet Sets, J. Functionnal Analysis, 6 (1970), 460-467. | MR 43 #925 | Zbl 0205.42302
,[D3] Linear operator. Part. I : General theory. Interscience, New York, 1958. | Zbl 0084.10402
and ,[G1] Uniform algebras. Prentice Hall Series in Modern Analysis, 1969. | Zbl 0213.40401
,[G2] Bounded approximation by rational functions (à paraître).
and ,[G3] Pointwise bounded approximation and Dirichlet algebras, J. Functional Analysis, 8 (1971), 360-404. | MR 45 #4153 | Zbl 0223.30056
and ,[G4] Analytic capacity and measure, Lecture Notes in Mathematics, 297, Springer-Verlag. | MR 56 #12257 | Zbl 0253.30014
,[L] Lectures on Complex Functions Algebras. Scott Foresman and Co (1970), 64-67. | MR 55 #1072 | Zbl 0219.46037
,[S1] Weak star density of polynomials, J. Reine Angew. Math., 252 (1972), 1-15. | MR 45 #4156 | Zbl 0242.46023
,[S2] A remark on the weak star topology of l∞, Studia Math., 30 (1968), 355-359. | MR 38 #2581 | Zbl 0159.18001
,