On donne quelques conditions pour l’existence de fonctions réelles de Baire de toutes les classes sur certains espaces -analytiques (appelés espaces analytiques disjoints) et sur tous les espaces pseudo-compacts. On montre que l’indice de stabilité séquentielle de l’espace de Banach des fonctions réelles bornées et continues est égal à 0,1 ou (= premier ordinal non dénombrable) sur ces espaces. Au contraire, on montre que l’espace des fonctions de Baire réelles bornées de la première classe contient des sous-espaces linéaires fermés de l’indice pour tous les ordinaux dénombrables . On montre que l’indice de stabilité séquentielle des sous-espaces linéaires des fonctions réelles continues sur un compact reste invariant par rapport à l’immersion isomorphique dans l’espace des fonctions réelles continues sur un compact quelconque.
Several equivalent conditions are given for the existence of real-valued Baire functions of all classes on a type of -analytic spaces, called disjoint analytic spaces, and on all pseudocompact spaces. The sequential stability index for the Banach space of bounded continuous real-valued functions on these spaces is shown to be either , or (the first uncountable ordinal). In contrast, the space of bounded real-valued Baire functions of class 1 is shown to contain closed linear subspaces with index for each countable ordinal . The sequential stability index for linear subspaces of continuous real-valued functions on a compact space is shown to be invariant under isomorphic embeddings in the space of continuous real-valued functions on any compact space.
@article{AIF_1974__24_4_47_0, author = {Jayne, J. E.}, title = {Space of Baire functions. I}, journal = {Annales de l'Institut Fourier}, volume = {24}, year = {1974}, pages = {47-76}, doi = {10.5802/aif.531}, mrnumber = {51 \#6714}, zbl = {0287.46031}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1974__24_4_47_0} }
Jayne, J. E. Space of Baire functions. I. Annales de l'Institut Fourier, Tome 24 (1974) pp. 47-76. doi : 10.5802/aif.531. http://gdmltest.u-ga.fr/item/AIF_1974__24_4_47_0/
[1] Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch., Amsterdam, 14 (1929), 1-96. | JFM 55.0960.02
et ,[2] The sequential stability index of a function space, Mathematika, 20 (1973), 210-213. | MR 49 #11240 | Zbl 0334.46027
and ,[3] On the cardinality of first countable compacta, Soviet Math. Dokl., 10 (1969), 951-955.
,[4] On topologies and Boundaries in Potential Theory, Lecture Notes in Mathematics No 175, Springer-Verlag, Berlin (1971). | MR 43 #7654 | Zbl 0222.31014
,[5] Remarks on a theorem of Schneider on the existence in perfectly normal bicompacta of an A-set which is not a B-set, Vestnik Moskov. Univ. Ser. I Mat. Meh., 2 (1962), 20.
,[6] Baire sets in complete topological spaces, Ukrain Mat. Z., 22 (1970), 330-342.
,[7] Ensembles boréliens et analytiques dans les espaces topologiques, C. R. Acad. Sci. Paris, 232 (1951), 2174-2176. | MR 13,19e | Zbl 0042.05403
,[8] Ensembles K-analytiques et K-Sousliniens. Cas général et cas métrique, Ann. Inst. Fourier, Grenoble, 9 (1959), 75-81. | Numdam | MR 22 #3692a | Zbl 0094.03403
,[9] A contribution to the descriptive theory of sets. General Topology and its Relations to Modern Analysis and Algebra I., Proc. Prague Symp., Academic Press, (1962). | Zbl 0116.14202
,[10] A survey of separable descriptive theory of sets and spaces, Czech. Math. J., 20 (95), (1970), 406-467. | MR 42 #1660 | Zbl 0223.54028
,[11] Rings of Continuous Functions. Van Nostrand Co., Princeton, (1960). | MR 22 #6994 | Zbl 0093.30001
et ,[12] Set Theory, Chelsea, New York, (1957). | MR 19,111a | Zbl 0081.04601
,[13] Trois exemples dans la théorie des espaces de fonctions continues, C. R. Acad. Sci. Paris, A 276 (1973), 685-687. | MR 48 #4675 | Zbl 0246.46011
,[14] Descriptive set theory in compact spaces, Notices Amer. Math. Soc., 17 (1970), 268.
,[15] Spaces of Baire functions, Baire classes, and Suslin sets. Doctoral dissertation, Columbia University, New York, (1971).
,[16] Topological representations of measurable spaces. General Topology and its Relations to Modern Analysis and Algebra III, Proc. Prague Symp., Academic Press, (1972). | Zbl 0313.54045
,[17] Characterizations and metrization of proper analytic spaces, Inventiones Mathematicae, 22 (1973), 51-62. | MR 48 #9687 | Zbl 0267.54036
,[18] Topology, Vol. I, Academic Press, New York, (1966). | MR 36 #840 | Zbl 0158.40802
,[19] Sur les fonctions représentables analytiquement, J. Math. Pures Appl., 1 (1905), 139-216. | JFM 36.0453.02
,[20] L'intégration dans les espaces généraux, Bull. Soc. Math. France, 88 (1960), 469-497. | Numdam | MR 23 #A2502 | Zbl 0094.09103
,[21] Compactification, Baire functions, and Daniell integration, Acta Sci. Math. (Szeged), 24 (1963), 204-218. | MR 29 #584 | Zbl 0117.09303
,[22] The Baire order problem for compact spaces, Duke Math. J., 33 (1966), 33-40. | MR 32 #8307 | Zbl 0138.17602
,[23] Function spaces and the Aleksandrov-Urysohn conjecture, Ann. Mat. Pura Appl., 86 (1970), 25-29.
,[24] Spaces of continuous functions III, [The space C(X) for X without perfect subsets], Studia Math., 18 (1959), 211-222. | MR 21 #6528 | Zbl 0091.27803
et ,[25] Borel sets in perfectly normal bicompacta, Soviet Math. Dokl., 7 (1966), 1236-1239. | MR 34 #3527 | Zbl 0169.54201
,[26] Descriptive Borel sets, Proc. Roy. Soc., A 286 (1965), 455-478. | MR 32 #2536 | Zbl 0158.20202
,[28] Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc., 8 (1957), 39-42. | MR 19,46b | Zbl 0077.31103
,[29] A remark on the weak-star topology of l∞, Studia Math., 30 (1968), 355-359. | MR 38 #2581 | Zbl 0159.18001
,[30] Hypothèse du Continu, Monografje Matematyczne, Warsaw, 4 (1934). | Zbl 0009.30201
,[31] On closed mappings II, Mat. Sb. (N.S.), 52 (94), 579-588, (1960). | MR 22 #9957 | Zbl 0127.38704
,