On démontre que si pour certaines valeurs de , alors
We prove that if for certain values of , then
@article{AIF_1974__24_3_159_0, author = {Fefferman, Charles}, title = {Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$}, journal = {Annales de l'Institut Fourier}, volume = {24}, year = {1974}, pages = {159-164}, doi = {10.5802/aif.523}, mrnumber = {52 \#11574}, zbl = {0292.26013}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1974__24_3_159_0} }
Fefferman, Charles. Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$. Annales de l'Institut Fourier, Tome 24 (1974) pp. 159-164. doi : 10.5802/aif.523. http://gdmltest.u-ga.fr/item/AIF_1974__24_3_159_0/
[1] Svoǐctba graničnyh značeniǐ funkciǐ iz vesovyh prostranctv i ih priloženija k kraevym zadačam. Mehanika Splošnoǐ sredy i rodstvennye problemy analiza. Moskva 1972.
,[2] O teoremah vloženija dlja vesovyh klassov, Trudi Mat. Instta AN SSSR, 60 (1961), 282-303.
,[3] Doklady AN SSSR, to appear.
,