Convergence on almost every line for functions with gradient in L p (𝐑 n )
Fefferman, Charles
Annales de l'Institut Fourier, Tome 24 (1974), p. 159-164 / Harvested from Numdam

On démontre que si grad (f)L p (R n ) pour certaines valeurs de p, alors

limx1f(x1,x2,...,xn)=const.,p.p.dansRn-1.

We prove that if grad (f)L p (R n ) for certain values of p, then

limx1f(x1,x2,...,xn)=const.,a.e.inRn-1.

@article{AIF_1974__24_3_159_0,
     author = {Fefferman, Charles},
     title = {Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$},
     journal = {Annales de l'Institut Fourier},
     volume = {24},
     year = {1974},
     pages = {159-164},
     doi = {10.5802/aif.523},
     mrnumber = {52 \#11574},
     zbl = {0292.26013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1974__24_3_159_0}
}
Fefferman, Charles. Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$. Annales de l'Institut Fourier, Tome 24 (1974) pp. 159-164. doi : 10.5802/aif.523. http://gdmltest.u-ga.fr/item/AIF_1974__24_3_159_0/

[1] L.D. Kudrjavcev, Svoǐctba graničnyh značeniǐ funkciǐ iz vesovyh prostranctv i ih priloženija k kraevym zadačam. Mehanika Splošnoǐ sredy i rodstvennye problemy analiza. Moskva 1972.

[2] S.V. Uspenskiǐ, O teoremah vloženija dlja vesovyh klassov, Trudi Mat. Instta AN SSSR, 60 (1961), 282-303.

[3] V. Portnov, Doklady AN SSSR, to appear.