On démontre un théorème limite central, en utilisant l’-entropie, d’abord dans où est un compact métrisable, puis dans un espace de Banach séparable quelconque.
Central limit theorems with hypotheses in terms of -entropy are proved first in where is a compact metric space and then in an arbitrary separable Banach space.
@article{AIF_1974__24_2_49_0, author = {Dudley, R. M.}, title = {Metric entropy and the central limit theorem in $C(S)$}, journal = {Annales de l'Institut Fourier}, volume = {24}, year = {1974}, pages = {49-60}, doi = {10.5802/aif.505}, mrnumber = {54 \#3807}, zbl = {0275.60033}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1974__24_2_49_0} }
Dudley, R. M. Metric entropy and the central limit theorem in $C(S)$. Annales de l'Institut Fourier, Tome 24 (1974) pp. 49-60. doi : 10.5802/aif.505. http://gdmltest.u-ga.fr/item/AIF_1974__24_2_49_0/
On the central limit theorem for C(Ik) valued random variables (preprint, Statistics Dept., Univ. of Calif., Berkeley), 1973.
,Probability inequalities for the sum of independent random variables, Jour. Amer. Statist. Assoc., 57 (1962), 33-45. | Zbl 0104.11905
,Sample functions of the Gaussian process, Ann. Probability, 1 (1973), 66-103. | MR 49 #11605 | Zbl 0261.60033
,Les fonctions aléatoires comme éléments aléatoires dans les espaces de Banach, Studia Math., 15 (1955), 62-79. | MR 19,1202b | Zbl 0068.11104
and ,On the central limit theorem for sample continuous processes, to appear in Annals of Probability, 1974. | Zbl 0288.60017
,A note on the central limit theorem in C(S), (preprint), 1973.
,Probability Theory (Princeton, Van Nostrand). | MR 34 #3596 | Zbl 0108.14202
, (1963),The central limit theorem and ε-en-tropy, Lecture Notes in Math., 89, 224-231. | MR 43 #5593 | Zbl 0196.21101
and , (1969),