Soit une fonction non négative singulière seulement pour : , . On étudie le comportement du processus de Wiener dans les voisinages à droite et à gauche des traversées d’un niveau, et on donne des conditions nécessaires et suffisantes pour que les intégrales de soient finies ou infinies.
Let be a nonnegative function with its only singularity at , e.g. , . We study the behavior of the Wiener process in left and right hand neighborhoods of level crossings by finding necessary and sufficient conditions on for the integrals of to be finite or infinite.
@article{AIF_1974__24_2_189_0, author = {Shepp, Lawrence A. and Klauder, John R. and Ezawa, Hiroshi}, title = {On the divergence of certain integrals of the Wiener process}, journal = {Annales de l'Institut Fourier}, volume = {24}, year = {1974}, pages = {189-193}, doi = {10.5802/aif.512}, mrnumber = {53 \#6772}, zbl = {0275.60088}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1974__24_2_189_0} }
Shepp, Lawrence A.; Klauder, John R.; Ezawa, Hiroshi. On the divergence of certain integrals of the Wiener process. Annales de l'Institut Fourier, Tome 24 (1974) pp. 189-193. doi : 10.5802/aif.512. http://gdmltest.u-ga.fr/item/AIF_1974__24_2_189_0/
[EKS] Vestigial Effects of Singular Potentials in Diffusion Theory and Quantum Mechanics. J. Math. Phys., to appear.
, and ,[IMcK] Diffusion Processes and Their Sample Paths, Springer (1965). | MR 33 #8031 | Zbl 0127.09503
and ,[KI] Field Structure Through Model Studies: Aspects of Nonrenormalizable Theories, Acta Phys. Austriaca, Suppl. XI (1973), 341-387.
,[Kn] Existence of Small Oscillations at Zeros of Brownian Motion, manuscript. | Numdam | Zbl 0305.60035
,[R] Sojourn Times of Diffusion Processes, Ill. J. Math., 7 (1963), 615-630. | MR 27 #6306 | Zbl 0118.13403
,[S] Radon-Nikodym Derivatives of Gaussian Measures, Ann. Math. Stat., 37 (1966), 321-354. | MR 32 #8408 | Zbl 0142.13901
,[V] Equivalent Gaussian Measures with a Particularly Simple Radon-Nikodym Derivative, Ann. Math. Stat., 38 (1967), 1027-1030. | MR 35 #4981 | Zbl 0171.15702
,