A necessary condition of local solvability for pseudo-differential equations with double characteristics
Cardoso, Fernando ; Trèves, François
Annales de l'Institut Fourier, Tome 24 (1974), p. 225-292 / Harvested from Numdam

On étudie des opérateurs pseudodifférentiels P(x,D) j=0 + P m-j (x,D) du point de vue de la résolubilité locale et sous l’hypothèse que le symbole principal se factorise sous la forme P m =QL 2 au voisinage (dans le fibré cotangent) d’un point (x 0 ,ξ 0 )L=0 (de plus Q est elliptique en ce point, et est homogène de degré m-2 ; L est homogène de degré 1). On fait l’hypothèse suivante : il existe un nombre complexe z tel que d ξ Re(zL)0 en (x 0 ,ξ 0 ) et tel que la restriction de Im (zL) à la bande bicaractéristique de Re(zL), passant par ce point, a un zéro d’ordre fini k<+ en (x 0 ,ξ 0 ) et change de signe en ce point de moins à plus. On démontre alors que P(x,D) n’est pas localement résoluble en x 0 quels que soient les termes d’ordre inférieur P m-j (j=1,2,...).

Pseudodifferential operators P(x,D) j=0 + P m-j (x,D) are studied, from the viewpoint of local solvability and under the assumption that, micro-locally, the principal symbol factorizes as P m =QL 2 with Q elliptic, homogeneous of degree m-2, and L homogeneous of degree one, satisfying the following condition : there is a point (x 0 ,ξ 0 ) in the characteristic variety L=0 and a complex number z such that d ξ Re (zL)0 at (x 0 ,ξ 0 ) and such that the restriction of Im (zL) to the bicharacteristic strip of Re (zL) vanishes of order k<+ at (x 0 ,ξ 0 ), changing sign there from minus to plus. It is then proved that P(x,D) is not locally solvable at x 0 , regardless of what the lower order terms P m-j (j=1,2,...) might be.

@article{AIF_1974__24_1_225_0,
     author = {Cardoso, Fernando and Tr\`eves, Fran\c cois},
     title = {A necessary condition of local solvability for pseudo-differential equations with double characteristics},
     journal = {Annales de l'Institut Fourier},
     volume = {24},
     year = {1974},
     pages = {225-292},
     doi = {10.5802/aif.499},
     mrnumber = {50 \#2726},
     zbl = {0273.35058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1974__24_1_225_0}
}
Cardoso, Fernando; Trèves, François. A necessary condition of local solvability for pseudo-differential equations with double characteristics. Annales de l'Institut Fourier, Tome 24 (1974) pp. 225-292. doi : 10.5802/aif.499. http://gdmltest.u-ga.fr/item/AIF_1974__24_1_225_0/

[1] A. Gilioli and F. Treves, ‘An example in the solvability theory of linear PDEʹsʹ, to appear in Amer. J. of Math. | Zbl 0308.35022

[2] L. Hormander, Linear Partial Differential Operators, Springer, Berlin, 1963. | MR 28 #4221 | Zbl 0108.09301

[3] L. Hormander, ‘Pseudo-differential operators and nonelliptic boundary problems, Annals of Math., Vol. 83, (1966), 129-209. | MR 38 #1387 | Zbl 0132.07402

[4] L. Hormander, ‘Pseudo-differential operators’, Comm. Pure Appl. Math., Vol. XVIII, (1965), 501-517. | MR 31 #4970 | Zbl 0125.33401

[5] S. Mizohata and Y. Ohya, ‘Sur la condition de E. E. Levi concernant des équations hyperboliques’, Publ. Res. Inst. Math. Sci. Kyoto Univ. A, 4 (1968), 511-526. | MR 43 #2349b | Zbl 0202.37401

[6] L. Nirenberg and F. Treves, ‘On local solvability of linear partial differential equations. Part I : Necessary conditions’, Comm. Pure Appl. Math., Vol. XXIII, (1970), 1-38. | MR 41 #9064a | Zbl 0191.39103

[7] J. Sjostrand, ‘Une classe d'opérateurs pseudodifférentiels à caractéristiques multiples’, C.R. Acad. Sc. Paris, t. 275 (1972), 817-819. | MR 49 #4055 | Zbl 0252.47052

[8] F. Treves, Ovcyannikov theorem and hyperdifferential operators, Notas de Matematica, Rio de Janeiro (Brasil), 1968. | Zbl 0205.39202