On étudie des opérateurs pseudodifférentiels du point de vue de la résolubilité locale et sous l’hypothèse que le symbole principal se factorise sous la forme au voisinage (dans le fibré cotangent) d’un point où (de plus est elliptique en ce point, et est homogène de degré ; est homogène de degré 1). On fait l’hypothèse suivante : il existe un nombre complexe tel que en et tel que la restriction de à la bande bicaractéristique de , passant par ce point, a un zéro d’ordre fini en et change de signe en ce point de moins à plus. On démontre alors que n’est pas localement résoluble en quels que soient les termes d’ordre inférieur .
Pseudodifferential operators are studied, from the viewpoint of local solvability and under the assumption that, micro-locally, the principal symbol factorizes as with elliptic, homogeneous of degree , and homogeneous of degree one, satisfying the following condition : there is a point in the characteristic variety and a complex number such that at and such that the restriction of to the bicharacteristic strip of vanishes of order at , changing sign there from minus to plus. It is then proved that is not locally solvable at , regardless of what the lower order terms might be.
@article{AIF_1974__24_1_225_0, author = {Cardoso, Fernando and Tr\`eves, Fran\c cois}, title = {A necessary condition of local solvability for pseudo-differential equations with double characteristics}, journal = {Annales de l'Institut Fourier}, volume = {24}, year = {1974}, pages = {225-292}, doi = {10.5802/aif.499}, mrnumber = {50 \#2726}, zbl = {0273.35058}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1974__24_1_225_0} }
Cardoso, Fernando; Trèves, François. A necessary condition of local solvability for pseudo-differential equations with double characteristics. Annales de l'Institut Fourier, Tome 24 (1974) pp. 225-292. doi : 10.5802/aif.499. http://gdmltest.u-ga.fr/item/AIF_1974__24_1_225_0/
[1] ‘An example in the solvability theory of linear PDEʹsʹ, to appear in Amer. J. of Math. | Zbl 0308.35022
and ,[2] Linear Partial Differential Operators, Springer, Berlin, 1963. | MR 28 #4221 | Zbl 0108.09301
,[3] ‘Pseudo-differential operators and nonelliptic boundary problems, Annals of Math., Vol. 83, (1966), 129-209. | MR 38 #1387 | Zbl 0132.07402
,[4] ‘Pseudo-differential operators’, Comm. Pure Appl. Math., Vol. XVIII, (1965), 501-517. | MR 31 #4970 | Zbl 0125.33401
,[5] ‘Sur la condition de E. E. Levi concernant des équations hyperboliques’, Publ. Res. Inst. Math. Sci. Kyoto Univ. A, 4 (1968), 511-526. | MR 43 #2349b | Zbl 0202.37401
and ,[6] ‘On local solvability of linear partial differential equations. Part I : Necessary conditions’, Comm. Pure Appl. Math., Vol. XXIII, (1970), 1-38. | MR 41 #9064a | Zbl 0191.39103
and ,[7] ‘Une classe d'opérateurs pseudodifférentiels à caractéristiques multiples’, C.R. Acad. Sc. Paris, t. 275 (1972), 817-819. | MR 49 #4055 | Zbl 0252.47052
,[8] Ovcyannikov theorem and hyperdifferential operators, Notas de Matematica, Rio de Janeiro (Brasil), 1968. | Zbl 0205.39202
,