Des estimations de l’ordre inférieur d’une série de Dirichlet
ont été obtenues en fonction des suites et .
Ces estimations améliorent considérablement celles obtenues précédemment par Rahman (Quart. J. Math. Oxford, (2), 7, 96-99 (1956)), Juneja et Singh (Math. Ann., 184 (1969), 25-29 ).
The estimations of lower order in terms of the sequences and for an entire Dirichlet series , have been obtained, namely :
One of these estimations improves considerably the estimations earlier obtained by Rahman (Quart. J. Math. Oxford, (2), 7, 96-99 (1956)) and Juneja and Singh (Math. Ann., 184(1969), 25-29 ).
@article{AIF_1974__24_1_123_0, author = {Jain, P. K. and Jain, D. R.}, title = {On the lower order $(R)$ of an entire Dirichlet series}, journal = {Annales de l'Institut Fourier}, volume = {24}, year = {1974}, pages = {123-129}, doi = {10.5802/aif.494}, mrnumber = {50 \#7520}, zbl = {0273.30021}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1974__24_1_123_0} }
Jain, P. K.; Jain, D. R. On the lower order $(R)$ of an entire Dirichlet series. Annales de l'Institut Fourier, Tome 24 (1974) pp. 123-129. doi : 10.5802/aif.494. http://gdmltest.u-ga.fr/item/AIF_1974__24_1_123_0/
[1] Asymptotic values of Holomorphic Functions of irregular growth, Bull. Amer. Math. Soc., 5, 71 (1965), 747-749. | MR 31 #3614 | Zbl 0147.06703
and ,[2] Holomorphic Functions with Gap Power Series, Math. Zeit, 86 (1965), 375-394. | MR 33 #7501 | Zbl 0133.03501
and ,[3] Holomorphic Functions with Gap Power Series, (II), Math. Anal. and Appl. 2, 13, (1966). | Zbl 0163.08802
and ,[4] On the Lower order of an entire function defined by Dirichlet series, Math. Ann. 184 (1969), 25-29. | MR 40 #7448 | Zbl 0182.09702
and ,[5] On entire functions represented by Dirichlet series (IV), Ann. Inst. Fourier, Grenoble, 16, 2 (1966), 209-223. | Numdam | MR 37 #1606 | Zbl 0145.08103
,[6] On the lower order of entire functions defined by Dirichlet series. Quart. J. Math. Oxford (2), 7 (1956), 96-99. | MR 20 #5282 | Zbl 0074.29901
,