Soit une fonction harmonique dans le demi-espace , . Nous montrons que peut avoir une limite fine en presque chaque point du cube unité dans sans avoir pourtant de limite non tangentielle en aucun point du cube. La méthode est probabiliste et utilise l’équivalence entre limites conditionnelles du mouvement brownien et limites fines à la frontière.
Dans , il est connu que l’on peut caractériser les classes de Hardy , , par l’intégrabilité de la fonction maximale du mouvement brownien. Nous montrons que ce résultat est aussi valable dans , pour .
Let be harmonic in the half-space , . We show that can have a fine limit at almost every point of the unit cubs in but fail to have a nontangential limit at any point of the cube. The method is probabilistic and utilizes the equivalence between conditional Brownian motion limits and fine limits at the boundary.
In it is known that the Hardy classes , , may be described in terms of the integrability of the nontangential maximal function, or, alternatively, in terms of the integrability of a Brownian motion maximal function. This result is shown to hold in , for .
@article{AIF_1973__23_4_195_0, author = {Burkholder, D. L. and Gundy, Richard F.}, title = {Boundary behaviour of harmonic functions in a half-space and brownian motion}, journal = {Annales de l'Institut Fourier}, volume = {23}, year = {1973}, pages = {195-212}, doi = {10.5802/aif.487}, mrnumber = {51 \#1943}, zbl = {0253.31010}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1973__23_4_195_0} }
Burkholder, D. L.; Gundy, Richard F. Boundary behaviour of harmonic functions in a half-space and brownian motion. Annales de l'Institut Fourier, Tome 23 (1973) pp. 195-212. doi : 10.5802/aif.487. http://gdmltest.u-ga.fr/item/AIF_1973__23_4_195_0/
[1] Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble), 13, (1963), 395-415. | Numdam | MR 33 #4299 | Zbl 0132.33902
and ,[2] Distribution function inequalities for the area integral, Studia Math., 44, (1972), 527-544. | MR 49 #5309 | Zbl 0219.31009
and ,[3] A maximal function characterization of the class Hp, Trans. Amer. Math. Soc., 157 (1971), 137-153. | MR 43 #527 | Zbl 0223.30048
, and ,[4] On the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc., 68, (1950), 47-54. | MR 11,357e | Zbl 0035.18901
,[5] On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc., 68, (1950), 55-61. | MR 11,357f | Zbl 0035.18903
,[6] On the existence of boundary values for harmonic functions in several variables, Arkiv för Mathematik, 4, (1961), 393-399. | MR 28 #2232 | Zbl 0107.08402
,[7] Über das Verhalten der analytischen Abildungen Riemannscher Flachen auf dem idealen Rand von Martin, Nagoya Math. J., 17, (1960), 1-87. | MR 23 #A1025 | Zbl 0104.29901
and ,[8] Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France, 85, (1957), 431-458. | Numdam | MR 22 #844 | Zbl 0097.34004
,[9] Boundary limit theorems for a half-space, J. Math. Pures Appl., (9) 37, (1958), 385-392. | MR 22 #845 | Zbl 0097.34101
,[10] Hp-spaces in several variables, Acta Math., 129, (1972), 137-193. | MR 56 #6263 | Zbl 0257.46078
and ,[11] Some properties of conjugate functions, J. fur Mat., 167, (1931), 405-423. | JFM 58.0333.03 | Zbl 0003.20203
and ,[12] Review 4471, Math. Reviews, 40, (1970), 824-825.
,[13] Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup., 66, (1949), 125-159. | Numdam | Zbl 0033.37301
,[14] A theorem of Lusin, Duke Math. J., 4, (1938), 473-485. | JFM 64.0268.01 | Zbl 0019.42001
and ,[15] Stochastic integrals, Academic Press, New York, 1969. | Zbl 0191.46603
,[16] Sur le rôle de la frontière de R. S. Martin dans la Théorie du potential, Ann. Inst. Fourier (Grenoble), 7, (1957), 183-285. | Numdam | MR 20 #6608 | Zbl 0086.30603
,[17] Integral Cauchy, Saratov, 1919.
,[18] A function-theoretic identity, Amer. J. Math., 65, (1943), 147-160. | MR 4,137f | Zbl 0060.20603
,[19] On the theory of harmonic functions of several variables II. Behaviour near the boundary, Acta Math., 106, (1961), 137-174. | MR 30 #3234 | Zbl 0111.08001
,[20] On the theory of harmonic functions of several variables I. The theory of Hp-spaces, Acta Math., 103, (1960), 25-62. | MR 22 #12315 | Zbl 0097.28501
and ,[21] The approximation of harmonic functions by harmonic polynomials and harmonic rational functions, Bull. Amer. Math. Soc., 35, (1929), 499-544. | JFM 55.0889.05
,