Construction of the solutions of boundary value problems for the biharmonic operator in a rectangle
Aronszajn, Nachman ; Brown, R. D. ; Butcher, R. S.
Annales de l'Institut Fourier, Tome 23 (1973), p. 49-89 / Harvested from Numdam

Une méthode est développée pour la construction des solutions de l’équation Δ 2 u=F dans R={(x,y):|x|<a,|y|<b}, soumises aux conditions aux limites u=ϕ, u n=ψ sur R. Le problème se réduit à celui de trouver la projection orthogonale Pw de wL 2 (R) sur le sous-espace HL 2 (R) des fonctions harmoniques dans R. Ce dernier problème est résolu par la décomposition de H en somme directe (non orthogonale) de deux sous-espaces fermés H (1) ,H (2) pour lesquels des bases orthonormées complètes sont connues explicitement. La projection P est exprimée en termes des projections P (i) , i=1,2, de L 2 (R) sur H (i) . Ceci permet d’établir une méthode d’approximation pour les solutions u du problème original admettant des évaluations a priori et a posteriori (celle-ci très précise) de l’erreur. Dans un appendice des résultats numériques sont donnés concernant l’application de la méthode dans quelques cas concrets en utilisant l’évaluation a posteriori de l’erreur.

A technique is developed for constructing the solution of Δ 2 u=F in R={(x,y):|x|<a,|y|<b}, subject to boundary conditions u=ϕ, u n=ψ on R. The problem is reduced to that of finding the orthogonal projection Pw of w in L 2 (R) onto the subspace H of square integrable functions harmonic in R. This problem is solved by decomposition H into the closed direct (not orthogonal) sum of two subspaces H (1) ,H (2) for which complete orthogonal bases are known. P is expressed in terms of the projections P (1) , P (2) of L 2 (R) onto H (1) , H (2) respectively. The resulting construction yields an approximation technique with both a priori and a posteriori error bounds (the latter very precise). In a short appendix the numerical results are given of the application of the technique in some specific examples and the a posteriori error evaluated.

@article{AIF_1973__23_3_49_0,
     author = {Aronszajn, Nachman and Brown, R. D. and Butcher, R. S.},
     title = {Construction of the solutions of boundary value problems for the biharmonic operator in a rectangle},
     journal = {Annales de l'Institut Fourier},
     volume = {23},
     year = {1973},
     pages = {49-89},
     doi = {10.5802/aif.472},
     mrnumber = {50 \#760},
     zbl = {0258.31009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1973__23_3_49_0}
}
Aronszajn, Nachman; Brown, R. D.; Butcher, R. S. Construction of the solutions of boundary value problems for the biharmonic operator in a rectangle. Annales de l'Institut Fourier, Tome 23 (1973) pp. 49-89. doi : 10.5802/aif.472. http://gdmltest.u-ga.fr/item/AIF_1973__23_3_49_0/

[1] R. Adams, N. Aronszajn, M. Hanna, Theory of Bessel Potentials, Part III, Ann. Inst. Fourier Grenoble, v. 19, 1969, 281-338. | Numdam | MR 54 #915 | Zbl 0176.09902

[2] R. Adams, N. Aronszajn, and K.T. Smith, Theory of Bessel Potentials, Part II, Ann. Inst. Fourier Grenoble, v. 17, 1967, 1-135. | Numdam | MR 37 #4281 | Zbl 0185.19703

[3] N. Aronszajn, Recherches sur les fonctions harmoniques dans un carré, Journ. de Math. Pures. et Appl., Neuvième série, 27 (1948), 87-175. | MR 10,116a | Zbl 0033.18302

[4] N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc., 68 (1950), 337-404. | MR 14,479c | Zbl 0037.20701

[5] N. Aronszajn, Some integral inequalities, Proceedings of the Symposium on Inequalities at Colorado Springs, 1967. | Zbl 0226.26018

[6] N. Aronszajn and W.F. Donoghue, Variational approximation methods applied to the eigenvalues of a clamped rectangular plate, Part I, Technical Report 12, University of Kansas, 1954. | Zbl 0058.32902

[7] N. Aronszajn and G.H. Hardy, Properties of a class of double integrals, Ann. of Math., 46 (1945), 220-241. Errata to this paper, Ann. of Math., 47 (1946), p. 166. | MR 7,116b | Zbl 0060.14202

[8] N. Aronszajn and K.T. Smith, Theory of Bessel Potentials, Part I, Ann. Inst. Fourier Grenoble, v. 11, 1961, 385-475. | Numdam | MR 26 #1485 | Zbl 0102.32401

[9] N. Aronszajn and P. Szeptycki, Theory of Bessel Potentials, Part IV, to appear as a technical report.

[10] S. Timoshenko, Theory of Plates and Shells, McGraw-Hill, New York, 1959.

[11] S. Zaremba, Le problème biharmonique restreint, Annales Ec. Norm. Sup., 26, 1909. | JFM 40.0842.01 | Numdam