Soient un espace analytique complexe réduit de dimension pure et un sous-espace lisse de de dimension pure tel que dimension dimension .
L’ensemble des points de en lesquels les conditions de Whitney strictes ne sont pas satisfaites par est un sous-espace analytique propre de .
Let be a reduced pure dimensional complex-analytic space and a nonsingular pure dimensional subspace of such that dimension dimension .
The set of points of at which the strict Whitney conditions are not satisfied by is a proper analytic subspace of .
@article{AIF_1973__23_3_215_0, author = {Speder, Jean-Paul}, title = {Analyticit\'e des conditions de Whitney strictes}, journal = {Annales de l'Institut Fourier}, volume = {23}, year = {1973}, pages = {215-226}, doi = {10.5802/aif.477}, mrnumber = {52 \#8493}, zbl = {0281.32007}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1973__23_3_215_0} }
Speder, Jean-Paul. Analyticité des conditions de Whitney strictes. Annales de l'Institut Fourier, Tome 23 (1973) pp. 215-226. doi : 10.5802/aif.477. http://gdmltest.u-ga.fr/item/AIF_1973__23_3_215_0/
[1] Un critère d'éclatement pour les conditions de Whitney, A paraître aux “Annali della Scuola Normale Superiore di Pisa”. | Numdam | Zbl 0285.32007
et ,[2] Normal cones in analytic Whitney stratifications. Publications Mathématiques n° 31, I.H.E.S. (1970). | Numdam | Zbl 0219.57022
,[3] Tangents to analytic variety, Annals of Mathematics, Vol 81 (1965). | MR 33 #745 | Zbl 0152.27701
,[4] Studies in Equisingularity II, Equisingularity in codimension 1 (and characteristic zero), American J. of Mathematics, Vol 87 (1965). | Zbl 0146.42502
,