Étant donné une classe de cohomologie , il existe une sous-variété duale à dans le sens de Poincaré. Il existe un ensemble de tels plongements qui est caractérisé par des propriétés topologiques, que les hypersurfaces algébriques de vérifient. Cet exposé résume quelques résultats sur la question : comment la divisibilité de limite-t-elle les sous-variétés duales, , dans cet ensemble ? Et nous donnons une formule pour la signature associée à un revêtement d’ordre sur , ramifiée sur ; nous le démontrons dans le cas où .
Given a cohomology class there is a smooth submanifold Poincaré dual to . A special class of such embeddings is characterized by topological properties which hold for nonsingular algebraic hypersurfaces in . This note summarizes some results on the question: how does the divisibility of restrict the dual submanifolds in this class ? A formula for signatures associated with a -fold ramified cover of branched along is given and a proof is included in case .
@article{AIF_1973__23_2_229_0, author = {Wood, J. and Thomas, Emery}, title = {On signatures associated with ramified coverings and embedding problems}, journal = {Annales de l'Institut Fourier}, volume = {23}, year = {1973}, pages = {229-235}, doi = {10.5802/aif.470}, mrnumber = {49 \#3964}, zbl = {0262.57012}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1973__23_2_229_0} }
Wood, J.; Thomas, Emery. On signatures associated with ramified coverings and embedding problems. Annales de l'Institut Fourier, Tome 23 (1973) pp. 229-235. doi : 10.5802/aif.470. http://gdmltest.u-ga.fr/item/AIF_1973__23_2_229_0/
[1] The index of elliptic operators: III, Annals of Math. 87 (1968), 546-604. | MR 38 #5245 | Zbl 0164.24301
and ,[2] Topological methods in algebraic geometry, 3rd ed., New York, 1966. | MR 34 #2573 | Zbl 0138.42001
,[3] The signature of ramified coverings, Papers in honor of Kodiara, 253-265, Princeton, 1969. | MR 41 #2707 | Zbl 0208.51802
,[4] On embedding surfaces in 4-manifolds, Proc. Symp. Pure Math. XXII. | Zbl 0234.57009
and ,[5] On the signature of an involution, Topology 8 (1969), 27-30. | MR 38 #6613 | Zbl 0184.27302
and ,[6] Classification of certain 6-manifolds, (to appear). | Zbl 0249.57005
,[7] Simply connected surgery of submanifolds in codimension two, I, (to appear). | Zbl 0238.57018
and ,[8] On 2-spheres in 4-manifolds, P.N.A.S. 47 (1961) 1651-1657. | MR 24 #A2968 | Zbl 0107.40303
and ,[9] Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969) 143-156. | MR 40 #3570 | Zbl 0198.56701
,[10] Two dimensional submanifolds of four dimensional manifolds, Functional Analysis and its Applications, 5 (1971), 39-48. | MR 45 #7733 | Zbl 0268.57019
,[11] Classification problems in differential topology. V. On certain 6-manifolds, Invent. Math. 2 (1966), 355-374. | Zbl 0149.20601
,[12] On manifolds representing homology classes in codimension 2, (to appear). | Zbl 0283.57018
and ,