Extensions through codimension one to sense preserving mappings
Titus, Charles J.
Annales de l'Institut Fourier, Tome 23 (1973), p. 215-227 / Harvested from Numdam

L’archétype des questions considérées ici est le suivant : “Quelles sont les courbes planes orientées qui peuvent être représentées comme images de la frontière d’un disque par une fonction holomorphe ?” Cette question est équivalente à la suivante : “Quelles sont les immersions du cercle dans le plan possédant une extension au disque fermé régulière, préservant l’orientation ( à jacobien non négatif)” ?

La seconde question est généralisée en termes du genre et de la dimension des ensembles de départ et d’arrivée. L’exposé est fait en termes de la motivation, des résultats, des méthodes et des conjectures.

The archetype for the questions considered is: “Which plane oriented curves in the plane are representable as the images of the boundary of a disk under holomorphic function?” This question is equivalent to: “Which immersion of the circle in the plane are extendable to smooth sense preserving (= non-negative jacobian) mappings of the closed disk with the jacobian positive on the boundary?”

The second question is generalized in terms of the genus and dimension of the source and target. An exposition is given in terms of motivation, results, approaches and conjectures.

@article{AIF_1973__23_2_215_0,
     author = {Titus, Charles J.},
     title = {Extensions through codimension one to sense preserving mappings},
     journal = {Annales de l'Institut Fourier},
     volume = {23},
     year = {1973},
     pages = {215-227},
     doi = {10.5802/aif.469},
     mrnumber = {50 \#1265},
     zbl = {0267.57015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1973__23_2_215_0}
}
Titus, Charles J. Extensions through codimension one to sense preserving mappings. Annales de l'Institut Fourier, Tome 23 (1973) pp. 215-227. doi : 10.5802/aif.469. http://gdmltest.u-ga.fr/item/AIF_1973__23_2_215_0/

[1] D. C. Benson, Extensions of a Theorem of Loewner on Integral Operators, Pacific J. Math. 9 (1959), 365-377. | MR 21 #7406 | Zbl 0085.31801

[2] S. J. Blank, Extending Immersions of the Circle, Dissertation, Brandeis U., 1967.

S. J. Blank and V. Poenaru, Extensions des Immersions en Codimension 1 (d'après Blank), Séminaire Bourbaki 1967-1968, Expose 342, Benjamin, 1969. | Numdam | Zbl 0223.57013

[3] P. M. Cohn, Free Associative Algebras, Bull. London Math. Soc. 1 (1969), 1-39. | MR 39 #2800 | Zbl 0174.32501

[4] A. O. Farias, Orientation Preserving Mappings, A Semigroup of Geometric Transformations and A Class of Integral Operators, Dissertation, U. of Michigan, 1970.

[5] A. O. Farias, Orientation Preserving Mappings, A Semigroup of Geometric Transformations and a Class of Integral Operators, Trans. AMS 167 (1972), 279-290. | Zbl 0214.50403

[6] A. O. Farias, Immersions of the Circle and Extensions to Orientation Preserving Mappings, Annals Brazilian Acad. Sci., to appear. | Zbl 0295.57017

[7] G. K. Francis, The Folded Ribbon Theorem, A Contribution to the Theory of Immersed Circles. Trans. A.M.S., 141 (1969), 271-303. | MR 39 #4863 | Zbl 0182.26404

[8] G. K. Francis, Extensions to the Disk of Properly Nested Immersions of the Circle, Michigan Math. J., 17 (1970), 373-383. | MR 44 #2209 | Zbl 0203.25804

[9] G. K. Francis, Restricted Homotopies of Normal Curves, Proc. AMS 77 (1971).

[10] G. K. Francis, Generic Homotopies of Immersions, Preprint, U. of Illinois, Urbana, 1972. | Zbl 0223.57016

[11] André Gramain, Bounding Immersions of Codimension 1 in Euclidean Space, Bull. AMS. 76 (1970), 361-364. | Zbl 0191.54701

[12] M. Heins and M. Morse, Deformation Classes of Meromorphic Functions and their Extensions to Interior Transformations, Acta Math., 80 (1947), 51-103. | MR 8,507b | Zbl 0029.29202

[13] M. Heins and M. Morse, Topological Methods in the Theory of Functions of a Complex Variable, Annals of Math. Studies 15, Princeton U. Press, Princeton, 1947. | MR 8,507c | Zbl 0041.39604

[14] C. Loewner, A Topological Characterization of a Class of Integral Operators, Annals of Math. (2), v. 49 (1948), 316-332. | MR 9,502d | Zbl 0032.07401

[15] M. L. Marx, Normal Curves arising from Light Open Mappings of the Annulus, Trans. AMS. 120 (1965), 45-56. | MR 33 #3278 | Zbl 0215.13201

[16] M. L. Marx, The Branch Point Structure of Extensions of Interior Boundaries, Trans. AMS. 13 (1968), 79-98. | MR 36 #5914 | Zbl 0167.51403

[17] M. L. Marx, Light Open Mappings on a Torus with a Disk Removed, Michigan Math. J., 15 (1968), 449-456. | MR 38 #2750 | Zbl 0177.25504

[18] M. L. Marx, Extensions of Normal Immersions of S1 in R2, (to appear) Trans. AMS. | Zbl 0284.30028

[19] M. L. Marx and R. F. Verhey, Interior and Polynomial Extensions of Immersed Circles, Proc. AMS 24 (1970), 41-49. | MR 40 #5879 | Zbl 0187.20105

[20] J. W. Milnor, Topology from a Differentiable Viewpoint, U. of Virginia Press, Charlottesville, 1965. | MR 37 #2239 | Zbl 0136.20402

[21] V. T. Norton, On Polynomial and Differential Transvections of the Plane, Dissertation, U. of Michigan, 1970.

[22] E. Picard, Traité d'Analyse (2), 310-314.

[23] V. Poenaru, On Regular Homotopy in Codimension One, Annals Math. 83 (1966), 257-265. | MR 33 #732 | Zbl 0142.41105

[24] S. Stoilow, Leçons sur des Principes Topologiques de la Théorie des Fonctions Analytiques, Gauthier-Villars, Paris, 1938.

[25] C. J. Titus, The Image of the Boundary under a Local Homeomorphism, Lectures on Functions of a Complex Variable, U. of Michigan Press (1955), 433-435. | MR 16,1096e | Zbl 0067.30506

[26] C. J. Titus, Sufficient Conditions that a Mapping be Open, Proc. AMS 10 (1959), 970-973. | MR 22 #971 | Zbl 0105.16803

[27] C. J. Titus, The Combinatorial Topology of Analytic Functions on the Boundary of a Disk, Acta Math. 105 (1961), 45-64. | MR 29 #3652 | Zbl 0101.15503

[28] C. J. Titus, Characterization of the Restriction of a Holomorphic Function to the Boundary of a Disk, J. Analyse Math. 18 (1967), 351-358. | MR 35 #3072 | Zbl 0181.36001

[29] C. J. Titus, Transformation Semigroups and Extensions to Sense Preserving Mappings, Aarhus U. Preprint Series 1970-1971, 35.

[30] C. J. Titus, A Proof of the Caratheodary Conjecture on Umbilic Points and a Conjecture of Lœwner, (to appear), Acta Math.

[31] C. J. Titus and G. S. Young, An Extension Theorem for a Class of Differential Operators, Michigan Math. J. 6 (1959), 195-204. | MR 22 #231 | Zbl 0089.06702

[32] R. F. Verhey, Diffeomorphic Invariants of Immersed Circles, Dissertation, U. of Michigan, 1966. | Zbl 0231.57018

[33] G. T. Whyburn, Topological Analysis, Princeton Math. Series 23, Princeton U. Press, Princeton, 1964. | Zbl 0186.55901