Si est un polyèdre de dimension , en employant des techniques géométriques, nous construisons des groupes et avec des isomorphismes naturels et induisant un accouplement d’intersection.
Ces groupes donnent une interprétation géométrique des deux suites spectrales étudiées par Zeeman et nous permettent de prouver une conjecture de Zeeman à leur sujet.
If is a -dim polyhedran, then using geometric techniques, we construct groups and such that there are natural isomorphisms and which induce an intersection pairing. These groups give a geometric interpretation of two spectral sequences studied by Zeeman and allow us to prove a conjecture of Zeeman about them.
@article{AIF_1972__22_4_47_0, author = {Gordon, Gerald Leonard}, title = {A Poincar\'e duality type theorem for polyhedra}, journal = {Annales de l'Institut Fourier}, volume = {22}, year = {1972}, pages = {47-58}, doi = {10.5802/aif.434}, mrnumber = {49 \#3904}, zbl = {0234.55012}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1972__22_4_47_0} }
Gordon, Gerald Leonard. A Poincaré duality type theorem for polyhedra. Annales de l'Institut Fourier, Tome 22 (1972) pp. 47-58. doi : 10.5802/aif.434. http://gdmltest.u-ga.fr/item/AIF_1972__22_4_47_0/
[1] The residue calculus in several complex variables. (To appear). | Zbl 0297.32009 | Zbl 0349.32002
,[2] Topology, Chelsea, New York, 1956. | Zbl 0045.25902
,[3] The Theory of Sheaves, University of Chicago Press, Chicago, 1964. | Zbl 0119.25801
,[4] Dihomology III, Proceedings of the London Math. Soc., (3), Vol. 13 (1963), pp. 155-183. | Zbl 0109.41302
,