A Poincaré duality type theorem for polyhedra
Gordon, Gerald Leonard
Annales de l'Institut Fourier, Tome 22 (1972), p. 47-58 / Harvested from Numdam

Si X est un polyèdre de dimension n, en employant des techniques géométriques, nous construisons des groupes H p (X) Δ et H p (X) Δ avec des isomorphismes naturels H p (X) Δ H n-p (X) et H p (X) Δ H n-p (X) induisant un accouplement d’intersection.

Ces groupes donnent une interprétation géométrique des deux suites spectrales étudiées par Zeeman et nous permettent de prouver une conjecture de Zeeman à leur sujet.

If X is a n-dim polyhedran, then using geometric techniques, we construct groups H p (X) Δ and H p (X) Δ such that there are natural isomorphisms H p (X) Δ H n-p (X) and H p (X) Δ H n-p (X) which induce an intersection pairing. These groups give a geometric interpretation of two spectral sequences studied by Zeeman and allow us to prove a conjecture of Zeeman about them.

@article{AIF_1972__22_4_47_0,
     author = {Gordon, Gerald Leonard},
     title = {A Poincar\'e duality type theorem for polyhedra},
     journal = {Annales de l'Institut Fourier},
     volume = {22},
     year = {1972},
     pages = {47-58},
     doi = {10.5802/aif.434},
     mrnumber = {49 \#3904},
     zbl = {0234.55012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1972__22_4_47_0}
}
Gordon, Gerald Leonard. A Poincaré duality type theorem for polyhedra. Annales de l'Institut Fourier, Tome 22 (1972) pp. 47-58. doi : 10.5802/aif.434. http://gdmltest.u-ga.fr/item/AIF_1972__22_4_47_0/

[1] G. L. Gordon, The residue calculus in several complex variables. (To appear). | Zbl 0297.32009 | Zbl 0349.32002

[2] S. Lefschetz, Topology, Chelsea, New York, 1956. | Zbl 0045.25902

[3] R. G. Swan, The Theory of Sheaves, University of Chicago Press, Chicago, 1964. | Zbl 0119.25801

[4] E. C. Zeeman, Dihomology III, Proceedings of the London Math. Soc., (3), Vol. 13 (1963), pp. 155-183. | Zbl 0109.41302