On caractérise la stabilité absolue d’un ensemble compact par les puissances des systèmes fondamentaux de voisinages positifs invariants.
Absolute stability of a compact set is characterized by the cardinality of a fundamental system of positively invariant neighborhoods.
@article{AIF_1972__22_4_265_0, author = {McCann, Roger C.}, title = {On absolute stability}, journal = {Annales de l'Institut Fourier}, volume = {22}, year = {1972}, pages = {265-269}, doi = {10.5802/aif.440}, mrnumber = {48 \#11687}, zbl = {0252.34050}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1972__22_4_265_0} }
McCann, Roger C. On absolute stability. Annales de l'Institut Fourier, Tome 22 (1972) pp. 265-269. doi : 10.5802/aif.440. http://gdmltest.u-ga.fr/item/AIF_1972__22_4_265_0/
[1] Prolongations and stability in dynamical systems, Ann. Inst. Fourier, Grenoble, 14 (1964), 237-268. | Numdam | MR 31 #455 | Zbl 0128.31303
, ,[2] Dynamical Systems in the Plane, Academic Press, London, 1968. | MR 39 #1767 | Zbl 0169.54401
,[3] Absolute stability of non-compact sets, J. Differential Equations 9 (1971), 496-508. | MR 42 #8035 | Zbl 0226.34045
,[4] Topology Vol. I, Academic Press, London, 1966. | MR 36 #840 | Zbl 0158.40802
,[5] Another characterization of absolute stability, Ann. Inst. Fourier, Grenoble, 21,4 (1971), 175-177. | Numdam | MR 49 #6206 | Zbl 0226.54037
,[6] A classification of centers, Pacific J. Math., 30 (1969), 733-746. | MR 41 #3930 | Zbl 0179.13101
,