On fait une étude des algèbres qui sont des quotients des algèbres uniformes et on démontre que cette classe est stable par interpolation. On démontre en particulier que le , appartiennent à cette classe et que appartient à cette classe si et seulement si .
We study Banach algebras that are quotients of uniform algebras and we show in particular that the class is stable by interpolation. We also show that , are algebras and that is a -algebra if and only if .
@article{AIF_1972__22_4_1_0,
author = {Varopoulos, Nicolas Th.},
title = {Some remarks on $Q$-algebras},
journal = {Annales de l'Institut Fourier},
volume = {22},
year = {1972},
pages = {1-11},
doi = {10.5802/aif.432},
mrnumber = {49 \#3544},
zbl = {0235.46074},
language = {en},
url = {http://dml.mathdoc.fr/item/AIF_1972__22_4_1_0}
}
Varopoulos, Nicolas Th. Some remarks on $Q$-algebras. Annales de l'Institut Fourier, Tome 22 (1972) pp. 1-11. doi : 10.5802/aif.432. http://gdmltest.u-ga.fr/item/AIF_1972__22_4_1_0/
[1] , Quotient algebras of uniform algebras, Symposium on Function algebras and rational approximation, University of Michigan 1969.
[2] , Quotient algebras of uniform algebras (to appear). | Zbl 0264.46055
[3] , Séminaire 1953-1954, Produits tensoriels topologiques, Exposé n° 7 II.
[4] , Intermediate spaces and interpolation, the complex method. Studia Math., T. xxiv (1964), 113-190. | MR 29 #5097 | Zbl 0204.13703
[5] , Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 51-111. | MR 39 #1911 | Zbl 0163.37002
[6] , Trigonometric series, C.I.P. (1959), vol. I, ch. VI, § 3 ; vol. II, ch. XII § 8. | Zbl 0085.05601
[7] , Sur les quotients des algèbres uniformes, C.R. Acad. Sci. t. 274 (A) p. 1344-1346. | Zbl 0245.46072
[8] , Tensor algebras over discrete spaces, J. Functional Analysis, 3 (1969), 321-335. | MR 40 #3328 | Zbl 0183.14502