On désigne par une algèbre de Banach homogène sur le cercle et par la sous-algèbre fermée de constituée par les fonctions qui ont des prolongements analytiques dans le disque ouvert . Ce travail considère la structure des idéaux fermés de , sous des restrictions convenables sur les propriétés de synthèse de . En particulier, on caractérise complètement les idéaux fermés de tels que les “zero sets” rencontrent le cercle en un ensemble dénombrable. Ces résultats contiennent des résultats précédents de Kahane et de Taylor-Williams obtenus indépendamment.
Let be a homogeneous algebra on the circle and the closed subalgebra of of functions having analytic extensions into the unit disk . This paper considers the structure of closed ideals of under suitable restrictions on the synthesis properties of . In particular, completely characterized are the closed ideals in whose zero sets meet the circle in a countable set of points. These results contain some previous results of Kahane and Taylor-Williams obtained independently.
@article{AIF_1972__22_3_1_0, author = {Bennett, Colin and Gilbert, John E.}, title = {Homogeneous algebras on the circle. I. Ideals of analytic functions}, journal = {Annales de l'Institut Fourier}, volume = {22}, year = {1972}, pages = {1-19}, doi = {10.5802/aif.422}, mrnumber = {49 \#3546}, zbl = {0228.46046}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1972__22_3_1_0} }
Bennett, Colin; Gilbert, John E. Homogeneous algebras on the circle. I. Ideals of analytic functions. Annales de l'Institut Fourier, Tome 22 (1972) pp. 1-19. doi : 10.5802/aif.422. http://gdmltest.u-ga.fr/item/AIF_1972__22_3_1_0/
[1] Questions of regularity connected with the Phragmen-Lindelöf principle, Ann. of Math., (2) 50 (1949), 341-346. | MR 10,522c | Zbl 0036.04702
and ,[2] On the Harmonic Analysis of Rearrangement-Invariant Banach Function Spaces, Thesis, University of Newcastle, 1971.
,[3] “Entire Functions”, Academic Press (1954), New York. | MR 16,914f | Zbl 0058.30201
,[4] “L'intégrale de Fourier et questions qui s'y rattachent”, Almqvist and Wiksell (1944), Uppsala. | Zbl 0060.25504
,[5] On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3, (1967), 429-440. | MR 19,408c | Zbl 0078.09301
,[6] On the harmonic analysis of some subalgebras of L1 (0, ∞), Seminar, Symposium in Harmonic Analysis, Warwick (1968).
,[7] On primary ideals in the space L1 (0, ∞), Soviet Math. Doklady, 7 (1966), 266-268. | Zbl 0154.39203
,[8] Invariant subspaces of analytic functions, Canad. J. Math., 17 (1965), 643-651. | MR 31 #3871 | Zbl 0128.34201
and ,[9] “Banach spaces of analytic functions”, Prentice-Hall (1962), Englewood Cliffs, N.J. | MR 24 #A2844 | Zbl 0117.34001
,[10] Idéaux primaires fermés dans certaines algèbres de Banach de fonctions analytiques, (to appear). | Zbl 0271.46047
,[11] “An introduction to harmonic analysis”, John Wiley (1968), New York. | MR 40 #1734 | Zbl 0169.17902
,[12] On the spectral analysis of bounded functions, Pacific J. Math., 16 (1966), 121-128. | MR 32 #8044 | Zbl 0146.12201
,[13] A generalization of Wiener's Tauberian Theorem and spectrum of fast growing functions, Trudy Moskov Mat. Obsc., 7 (1958), 121-148.
,[14] Homogeneous algebras on compact abelian groups, Trans. Amer. Math. Soc., 87 (1958), 372-386. | MR 21 #820 | Zbl 0083.34603
,[15] The work of Silov on commutative Banach algebras, Notas de Matematica, No. 20 (1959), Rio de Janeiro. | MR 33 #3130 | Zbl 0090.09301
,[16] On the one-dimensional translation group and semi-group in certain function spaces, Thesis (1950), Uppsala. | MR 12,108g | Zbl 0037.35401
,[17] Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc., 8 (1957), 39-42. | MR 19,46b | Zbl 0077.31103
,[18] Homogeneous rings of functions, Amer. Math. Soc. Translation No. 92. | Zbl 0053.08401
,[19] The space of functions analytic in the disk with indefinitely differentiable boundary values, (submitted for publication).
and ,