Soit une fonction additive définie sur un clan à valeurs dans un groupe topologique commutatif séparé et soit un idéal de . On donne des conditions suffisantes pour que soit la somme de deux fonctions additives, l’une essentiellement portée sur , l’autre nulle sur . Ce résultat est utilisé pour obtenir deux décompositions de Lebesgue. On indique aussi d’autres applications ainsi que la théorie correspondante pour les mesures extérieures.
Let be an additive function on a ring of sets, with values in a commutative Hausdorff topological group, and let be an ideal of . Conditions are given under which can be represented as the sum of two additive functions, one essentially supported on , the other vanishing on . The result is used to obtain two Lebesgue-type decomposition theorems. Other applications and the corresponding theory for outer measures are also indicated.
@article{AIF_1972__22_3_131_0, author = {Traynor, Tim}, title = {Decomposition of group-valued additive set functions}, journal = {Annales de l'Institut Fourier}, volume = {22}, year = {1972}, pages = {131-140}, doi = {10.5802/aif.427}, mrnumber = {48 \#11439}, zbl = {0228.28004}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1972__22_3_131_0} }
Traynor, Tim. Decomposition of group-valued additive set functions. Annales de l'Institut Fourier, Tome 22 (1972) pp. 131-140. doi : 10.5802/aif.427. http://gdmltest.u-ga.fr/item/AIF_1972__22_3_131_0/
[1] Decomposition of additive set functions, Duke Math. Jour., 10 (1943), 653-665. | MR 5,232c | Zbl 0063.06492
,[2] Outer measures with values in a topological group, Proc. Lond. Math. Soc. (3), 19 (1969), 89-106. | MR 39 #398 | Zbl 0167.14503
,[3] Group-valued outer measures, International Congress of Mathematicians, Nice, 1970. | Zbl 0224.28008
,[4] Absolute continuity for group-valued measures (to appear), Can. Math. Bull., 1973. | MR 50 #7475 | Zbl 0289.28010
,[5] A general Hewitt-Yosida Decomposition, (to appear). Can. Jour. Math. | Zbl 0219.46034
,