Les solutions d’équations d’évolution où est un opérateur maximal monotone d’un espace de Hilbert , et sont étudiées dans le cas général en introduisant une notion de solution faible. Des résultats particuliers sont donnés lorsque est de dimension finie ou plus généralement lorsque l’intérieur de est non vide.
Introducing the notion of “weak solution”, we study the solutions of evolution equation of the type where is a maximal monotone operator of the Hilbert space , and is in . Special results are proved when is finite dimensional and more generally when the interior of is not empty.
@article{AIF_1972__22_2_311_0, author = {B\'enilan, P. and Br\'ezis, H.}, title = {Solutions faibles d'\'equations d'\'evolution dans les espaces de Hilbert}, journal = {Annales de l'Institut Fourier}, volume = {22}, year = {1972}, pages = {311-329}, doi = {10.5802/aif.421}, mrnumber = {49 \#1245}, zbl = {0226.47034}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_1972__22_2_311_0} }
Bénilan, P.; Brézis, H. Solutions faibles d'équations d'évolution dans les espaces de Hilbert. Annales de l'Institut Fourier, Tome 22 (1972) pp. 311-329. doi : 10.5802/aif.421. http://gdmltest.u-ga.fr/item/AIF_1972__22_2_311_0/
[1] On a problem of T. Kato, Comm. Pure App. Math., 24 (1971). | MR 42 #5098 | Zbl 0208.39102
,[2] Propriétés régularisantes de certains semi-groupes non linéaires, Israel J. of Math. | Zbl 0213.14903
,[3] Opérateurs maximaux monotones et semi groupes non linéaires, Cours 3e cycle rédigé par P. Benilan, Paris, (1970).
,[4] The solution by iteration of non linear functional equations in Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 571-575. | MR 32 #8155b | Zbl 0138.08202
and ,[5] Generation of semi groups of non linear transformations on general Banach spaces, (à paraître). | Zbl 0226.47038
and ,[6] Semigroups of non linear contractions and dissipative sets. J. Funct. Anal., 3 (1969), 376-418. | MR 39 #4705 | Zbl 0182.18903
and ,[7] Linear operators, interscience.
et ,[8] Accretive operators and non linear evolution equations in Banach spaces, Non linear Functional Analysis, Proc. Symp. Pure Math., 18, 138-161 A.M.S. (1970). | MR 42 #6663 | Zbl 0232.47069
,[9] Non linear semigroups in Hilbert spaces, J. Math. Soc. Japan, 19 (1967), 493-507. | MR 35 #7176 | Zbl 0163.38302
,[10] Local boundedness of non linear monotone operators, Michigan Math. J., 16 (1969), 397-407. | MR 40 #6229 | Zbl 0175.45002
,