On démontre que si est le produit topologique d’une famille non dénombrable d’espaces tonnelés de dimension non nulle, il existe un nombre infini de sous-espaces tonnelés de , qui ne sont pas bornologiques. Un résultat semblable est obtenu si l’on change “tonnelé” en “infratonnelé”.
If is the topological product of a non-countable family of barrelled spaces of non-nulle dimension, there exists an infinite number of non-bornological barrelled subspaces of . The same result is obtained replacing “barrelled” by “quasi-barrelled”.
@article{AIF_1972__22_2_27_0, author = {Valdivia, Manuel}, title = {On nonbornological barrelled spaces}, journal = {Annales de l'Institut Fourier}, volume = {22}, year = {1972}, pages = {27-30}, doi = {10.5802/aif.410}, mrnumber = {49 \#1050}, zbl = {0226.46006}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1972__22_2_27_0} }
Valdivia, Manuel. On nonbornological barrelled spaces. Annales de l'Institut Fourier, Tome 22 (1972) pp. 27-30. doi : 10.5802/aif.410. http://gdmltest.u-ga.fr/item/AIF_1972__22_2_27_0/
[1] Sur certains spaces vectoriels topologiques, Ann. Inst. Fourier, 5-16 (1950). | Numdam | MR 13,137d | Zbl 0042.35302
,[2] Recent development in the theory of locally convex spaces, Bull. Amer. Math. Soc., 59, 495-512 (1953). | MR 15,963a | Zbl 0053.25701
,[3] Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math., 25, 50-55 (1952). | MR 15,38b | Zbl 0049.08202
,[4] Some examples on linear topological spaces, Math. Ann., 153, 150-162 (1964). | MR 32 #2884 | Zbl 0149.33604
,[5] Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci., USA, 40, 471-474 (1954). | MR 16,156h | Zbl 0055.09803
,[6] On locally convex vector spaces of continuous functions, Proc. Jap. Acad., 30, 294-298 (1954). | MR 16,275d | Zbl 0057.33801
,