Nous visons à construire une variété semi-linéaire qui est cellulairement équivalente à une variété homologique donnée. Le théorème dit qu’il y a un élément d’obstruction unique dans , où est un groupe de sphères homologiques qui sont des variétés semi-linéaires. Les éléments triviaux de sont ceux qui sont un bord d’une variété semi-linéaire acyclique. Si l’obstruction est zéro et compacte, nous obtenons une variété semi-linéaire qui est simplement homotopiquement équivalente à .
We aim at constructing a PL-manifold which is cellularly equivalent to a given homology manifold . The main theorem says that there is a unique obstruction element in , where is the group of 3-dimensional PL-homology spheres modulo those which are the boundary of an acyclic PL-manifold. If the obstruction is zero and is compact, we obtain a PL-manifold which is simple homotopy equivalent to .
@article{AIF_1972__22_1_271_0, author = {Sato, Hajime}, title = {Constructing manifolds by homotopy equivalences I. An obstruction to constructing PL-manifolds from homology manifolds}, journal = {Annales de l'Institut Fourier}, volume = {22}, year = {1972}, pages = {271-286}, doi = {10.5802/aif.406}, mrnumber = {49 \#1522}, zbl = {0219.57009}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1972__22_1_271_0} }
Sato, Hajime. Constructing manifolds by homotopy equivalences I. An obstruction to constructing PL-manifolds from homology manifolds. Annales de l'Institut Fourier, Tome 22 (1972) pp. 271-286. doi : 10.5802/aif.406. http://gdmltest.u-ga.fr/item/AIF_1972__22_1_271_0/
[1] Homeomorphisms between homotopy manifolds and their resolutions, Inventions Math. 10 (1970), 239-250. | MR 43 #1195 | Zbl 0202.22905
,[2] Differentiable actions of compact connected classical groups I, Amer. J. Math. 89 (1967), 705-786. | MR 36 #304 | Zbl 0184.27204
et ,[3] Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. | Numdam | MR 32 #6479 | Zbl 0141.21201
,[4] Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67-72. | MR 40 #6562 | Zbl 0187.20401
,[5] Groups of homotopy spheres I, Ann. Math. 77 (1963), 504-537. | MR 26 #5584 | Zbl 0115.40505
et ,[6] Variety of manifolds (in Japanese), Sûgaku 21 (1969), 275-285.
,[7] Generalized homology theory, Trans. Amer. Math. Soc. 102 (1962), 227-283. | MR 25 #573 | Zbl 0124.38302
,[8] Simple homotopy types, Amer. J. Math. 72 (1950), 1-57. | MR 11,735c | Zbl 0040.38901
,[9] Geometric periodicity and the invariants of manifolds, Lecture Notes in Math. Springer Verlag 197, 44-75. | MR 44 #2236 | Zbl 0224.57002
,