Étant donné un système projectif d’espaces mesurés , on étudie le problème d’existence d’une limite projective en considérant d’abord une mesure définie sur le produit . Sous de simples conditions de régularité des , on montre que a presque toutes les propriétés d’une limite. En outre, la limite projective peut exister seulement si est elle-même une “limite” dans un sens plus général et est alors la restriction de à l’ensemble limite des . On obtient des résultats plus forts que ceux connus jusqu’à présent en examinant cette restriction.
In this paper the problem of the existence of an inverse (or projective) limit measure of an inverse system of measure spaces is approached by obtaining first a measure on the whole product space .
The measure will have many of the properties of a limit measure provided only that the measures possess mild regularity properties.
It is shown that can only exist when is itself a “limit” measure in a more general sense, and that must then be the restriction of to the projective limit set .
Results stronger than those previously known are obtained by examining restricted to .
@article{AIF_1971__21_1_25_0, author = {Mallory, J. D. and Sion, Maurice}, title = {Limits of inverse systems of measures}, journal = {Annales de l'Institut Fourier}, volume = {21}, year = {1971}, pages = {25-57}, doi = {10.5802/aif.361}, mrnumber = {44 \#1782}, zbl = {0205.07101}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1971__21_1_25_0} }
Mallory, J. D.; Sion, Maurice. Limits of inverse systems of measures. Annales de l'Institut Fourier, Tome 21 (1971) pp. 25-57. doi : 10.5802/aif.361. http://gdmltest.u-ga.fr/item/AIF_1971__21_1_25_0/
[1] Of the introduction of measures in infinite product sets, Danski Vid. Selskab Mat. Fys. Medd. 25 (1948) No. 4. | MR 10,239g | Zbl 0031.01305
and ,[2] Measure and integration, MacMillan Co. New York (1965). | MR 32 #1315 | Zbl 0126.08001
,[3] Harmonic analysis and probability theory Univ. of Cal. Press, Berkeley, 1955. | Zbl 0068.11702
,[4] Théorie des Ensembles Livre I Ch. III, Hermann, Paris.
,[5] inverse limits of measure spaces, Proc. London Math. Soc., 8 (1958) 321-342. | MR 20 #3251 | Zbl 0085.04003
,[6] Measure theory, Van Nostrand, New York, (1950). | MR 11,504d | Zbl 0040.16802
,[7] Conditional probabilities on strictly separable σ-algebra (Russian) Czech. Math. J. 4 (79) (1954) 372-80. | MR 16,1034j | Zbl 0058.11801
,[8] Introduction to measure and probability, Cambridge U.P. London, 1966. | Zbl 0171.38603
and ,[9] Grundebegriff der Wahrscheinlichheit (Berlin, 1933), (English translation: Chelsea, New York 1956).
,[10] Limits of Inverse Systems of Measures, thesis, University of British Columbia 1968.
,[11] On Compact Measures, Fund. Math. 40 (1953) 113-24. | MR 15,610a | Zbl 0052.04902
,[12] Limites projectives de mesures, Martingales Applications, Ann. di Mathematica 63, (1963) 225-352. | MR 29 #212 | Zbl 0137.35401
,[13] Probabilities and Potentials, Blaisdell (1966). | Zbl 0138.10401
,[14] Mathematical Foundations of the Calculus of Probability, Holden-Day, 1965. | MR 33 #6660 | Zbl 0137.11301
,[15] Convergence of random processes and limit theorems of probability theory (in Russian), Teoriya Veroyatnostei i ee Primeneniya 1, 177-237 (1956). English translation: Theory Probab. and Appl. 1, 157-214 (1956). | MR 18,943b | Zbl 0075.29001
, ,[16] Sur une généralisation d'un théorème d'Ionescu Tulcea, C.R. Acad. Sc. Paris 259 (1964), 2769-2772. | MR 32 #477 | Zbl 0133.39904
,[17] Generalizations of the theory of Lebesgue spaces and of the definition of entropy in ergodic theory, thesis, University of Utrecht 1966.
,[18] Projective limits of directed projective systems of probability spaces, Z. Wahrscheinlichkeitstheorie verw. Geb. 13, 60-80 (1969). | MR 41 #7731 | Zbl 0176.47501
,[19] Lecture Notes on Measure Theory, Biennial Seminar of the Canadian Mathematical Congress, (1965).
,[20] Introduction to the Methods of Real Analysis, Holt, Rinehart and Winston, New York (1968). | MR 37 #5332 | Zbl 0181.05602
,