Soit une variété riemannienne à dimensions, admettant un endomorphisme covariant constant du module local de 1-formes ayant des valeurs propres distinctes et différentes de zéro. On montre que est localement plat, et on étudie une variété immergée dans . La variété a une structure induite avec des mêmes valeurs propres si et seulement si la normale à est une direction fixe de . Enfin, on trouve les conditions sous lesquelles est invariant sous , est totalement géodésique et la structure induite a une torsion de Nijenhuis nulle ou est covariante constante.
Let be an -dimensional Riemannian manifold admitting a covariant constant endomorphism of the localized module of 1-forms with distinct non-zero eigenvalues. After it is shown that is locally flat, a manifold immersed in is studied. The manifold has an induced structure with of the same eigenvalues if and only if the normal to is a fixed direction of . Finally conditions under which is invariant under , is totally geodesic and the induced structure has vanishing Nijenhuis torsion or is covariant constant are found.
@article{AIF_1971__21_1_1_0, author = {Blair, David E. and Stone, Alexander P.}, title = {Geometry of manifolds which admit conservation laws}, journal = {Annales de l'Institut Fourier}, volume = {21}, year = {1971}, pages = {1-9}, doi = {10.5802/aif.359}, mrnumber = {44 \#948}, zbl = {0197.18101}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1971__21_1_1_0} }
Blair, David E.; Stone, Alexander P. Geometry of manifolds which admit conservation laws. Annales de l'Institut Fourier, Tome 21 (1971) pp. 1-9. doi : 10.5802/aif.359. http://gdmltest.u-ga.fr/item/AIF_1971__21_1_1_0/
[1] A note on the holonomy group of manifolds with certain structures, Proc. AMS, 21 (1), (1969), 73-76. | MR 38 #5133 | Zbl 0175.48802
and ,[2] Theory of vector valued differential forma, I ; Ned. Akad. Wet. Proc. 59 (1956), 338-359. | Zbl 0079.37502
and ,[3] A remark on the Nijenhuis tensor, Pacific J. Math., 12, (1962), 963-977. | MR 27 #678 | Zbl 0126.17901
,[4] The existence of conservation laws, I ; Ann. of Math., 69 (1959), 105-118. | MR 21 #760 | Zbl 0119.07801
,[5] Les lois de conservation, Ann. Inst. Fourier, (Grenoble), 14 (1964), 71-82. | Numdam | MR 30 #2425 | Zbl 0126.10904
,[6] Analytic conservation laws, Ann. Inst. Fourier, (Grenoble), 16 (2), (1966), 319-327. | Numdam | MR 35 #6160 | Zbl 0168.07301
,[7] Generalized conservation laws, Proc. AMS 18, (5), (1967), 868-873. | MR 36 #805 | Zbl 0159.13602
,