On donne des conditions suffisantes sous lesquelles, pour un convexe borné fermé d’un espace localement convexe réel , l’ensemble [des fonctions continues de l’espace compact dans ] est l’enveloppe convexe uniformément fermée dans de ses points extrémaux. On applique ces résultats à la boule unité de l’espace d’opérateurs bornés (ou compacts, ou faiblement compacts) de certains espaces de Banach dans .
Sufficient conditions are given in order that, for a bounded closed convex subset of a locally convex space , the set of continuous functions from the compact space into , is the uniformly closed convex hull in of its extreme points. Applications are made to the unit ball of bounded (or compact, or weakly compact) operators from certain Banach spaces into .
@article{AIF_1970__20_2_45_0, author = {Phelps, Robert R.}, title = {Theorems of Krein Milman type for certain convex sets of functions operators}, journal = {Annales de l'Institut Fourier}, volume = {20}, year = {1970}, pages = {45-54}, doi = {10.5802/aif.351}, mrnumber = {44 \#4501}, zbl = {0195.40807}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1970__20_2_45_0} }
Phelps, Robert R. Theorems of Krein Milman type for certain convex sets of functions operators. Annales de l'Institut Fourier, Tome 20 (1970) pp. 45-54. doi : 10.5802/aif.351. http://gdmltest.u-ga.fr/item/AIF_1970__20_2_45_0/
[1] The support functionals of a convex set, Proc. Symp. Pure Math. vol 7 (Convexity), A.M.S. (1963), p. 27-35. | MR 27 #4051 | Zbl 0149.08601
and ,[2] Extreme operators into C(K), Pacific J. Math. 15 (1965), p. 747-756. | MR 35 #758 | Zbl 0141.32101
, and ,[3] Espaces vectoriels topologiques, Ch. 1 et 2, 2e édition, Paris, 1966.
,[4] Vector measures, Berlin, 1967.
,[5] Linear operators Part I, (1958), Interscience. | Zbl 0084.10402
and ,[6] Theorems of Krein-Milman type for certain convex sets of operators, Trans. Amer. Math. Soc. 150 (1970), 183-200. | MR 41 #7409 | Zbl 0198.46601
and ,[7] Generalization of a theorem of Lindenstrauss (dittoed notes).
,