A property of Fourier Stieltjes transforms on the discrete group of real numbers
Domar, Yngve
Annales de l'Institut Fourier, Tome 20 (1970), p. 325-334 / Harvested from Numdam

Soit μ une transformée de Fourier-Stieltjes, définie sur la droite réelle discrète et avec la mesure correspondante sur le groupe dual s’annulant sur l’ensemble des caractères continus sur R. Alors pour chaque ε>0 la mesure de Lebesgue intérieure de {xR| Re (μ(x))>ε} est nulle. Pour ε=0 la proposition est, en général, inexacte. Le résultat est appliqué pour démontrer un théorème de M. Rosenthal.

Let μ be a Fourier-Stieltjes transform, defined on the discrete real line and such that the corresponding measure on the dual group vanishes on the set of characters, continuous on R. Then for every ε>0, {xR| Re (μ(x))>ε} has a vanishing interior Lebesgue measure. If ε=0 the statement is not generally true. The result is applied to prove a theorem of Rosenthal.

@article{AIF_1970__20_2_325_0,
     author = {Domar, Yngve},
     title = {A property of Fourier Stieltjes transforms on the discrete group of real numbers},
     journal = {Annales de l'Institut Fourier},
     volume = {20},
     year = {1970},
     pages = {325-334},
     doi = {10.5802/aif.356},
     mrnumber = {44 \#3077},
     zbl = {0183.40002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1970__20_2_325_0}
}
Domar, Yngve. A property of Fourier Stieltjes transforms on the discrete group of real numbers. Annales de l'Institut Fourier, Tome 20 (1970) pp. 325-334. doi : 10.5802/aif.356. http://gdmltest.u-ga.fr/item/AIF_1970__20_2_325_0/

[1] H. Rosenthal, A characterization of restrictions of Fourier-Stieltjes transforms, Pac. J. Math. 23 (1967) 403-418. | MR 36 #3065 | Zbl 0155.18901

[2] W. Rudin, Fourier analysis on groups. New York 1962. | MR 27 #2808 | Zbl 0107.09603