On construit les ensembles suivants : un ensemble parfait non de Dirichlet tel que tout sous-ensemble strict fermé soit un ensemble de Kronecker ; un ensemble de Kronecker faible qui n’est pas un ensemble de type ; un ensemble de Dirichlet dénombrable indépendant qui n’est pas un ensemble de Kronecker ; une famille de ensembles de Kronecker disjoints dont l’union est indépendante mais n’est pas un ensemble de Helson ; une famille dénombrable d’ensembles de Kronecker disjoints dont l’union est fermée et indépendante mais n’est pas un ensemble de Helson : un ensemble de Dirichlet indépendant et parfait qui n’est pas un ensemble de Helson.
We construct the following: a perfect non Dirichlet set every proper closed subset of which is Kronecker, A weak Kronecker set which is not an set; an independent countable Dirichlet set which is not Kronecker; a collection of -disjoint Kronecker sets whose union is independent but Helson ; A countable collection of disjoint Kronecker sets whose union is closed and independent but not Helson: a perfect independent Dirichlet set which is not Helson.
@article{AIF_1970__20_2_219_0, author = {Korner, Thomas-William}, title = {Some results on Kronecker, Dirichlet and Helson sets}, journal = {Annales de l'Institut Fourier}, volume = {20}, year = {1970}, pages = {219-324}, doi = {10.5802/aif.355}, mrnumber = {44 \#1995}, zbl = {0196.08403}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1970__20_2_219_0} }
Korner, Thomas-William. Some results on Kronecker, Dirichlet and Helson sets. Annales de l'Institut Fourier, Tome 20 (1970) pp. 219-324. doi : 10.5802/aif.355. http://gdmltest.u-ga.fr/item/AIF_1970__20_2_219_0/
[1] Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France, t. 80, (1952), 254-317. | Numdam | MR 14,1080d | Zbl 0048.04202
,[2] A Treatise on Trigonometric Series, Vol. II., English translation Pergamon Press, Oxford (1964). | MR 30 #1347 | Zbl 0129.28002
,[3] An Introduction to Diophantine Approximation, Cambridge University Press, (1965).
,[4] Introduction to the Theory of Numbers, 4th edition, Oxford University Press, (1959).
and ,[5] Über die Spaltung von Fourierreihen fast periodischer Funktionen, Studia Mathematica 19, (1960) 287-295. | MR 22 #9805 | Zbl 0093.08301
and ,[6] Set Theory, English translation, Chelsea, New York (1957). | Zbl 0081.04601
,[7] Abstract Harmonic Analysis, Springer Verlag, Berlin (1963).
and ,[8] Approximation par des exponentielles imaginaires ; ensembles de Dirichlet et ensembles de Kronecker. Journal of Approximation Theory 2, (1969).
,[9] Ensembles Parfaits et Séries Trigonométriques, Hermann, Paris (1963). | MR 28 #3279 | Zbl 0112.29304
and ,[10] An Introduction to Harmonic Analysis. John Wiley and Sons, New York, (1968). | MR 40 #1734 | Zbl 0169.17902
,[11] A Functional Method for Linear Sets, Israel J. Math. 5, (1967). | MR 38 #4902 | Zbl 0156.37403
,[12] Theory of Graphs, American Mathematical Society Colloquium Publications, Vol. XXXVIII, A.M.S.: Rhode Island (1962). | MR 27 #740 | Zbl 0105.35401
,[13] Fourier Analysis on Groups, John Wiley and Sons, New York, (1967).
,[14] Œuvres Mathématiques, Hermann, Paris (1967). | MR 36 #22 | Zbl 0145.06901
,[15] Some Examples of Sets with Linear Independence, Ark. Mat. 5, (1965), 207-214. | Zbl 0127.29403
,[16] Groupes des fonctions continues sur un compact, Studia Mathematica 35, (1970), 199-205. | Zbl 0199.46602
and ,[17] Groups of Continuous Functions in Harmonic Analysis Acta. Math, 125, (1970), 109-154. | MR 43 #7868 | Zbl 0214.38102
,[18] Comptes Rendus Acad. Sci., Paris, 268, (1969), 954-957. | Zbl 0187.07301
,[19] A problem on Kronecker sets, Studia Mathematica 37, (1970), 95-101. | MR 42 #3493 | Zbl 0202.14002
,