On démontre un théorème de représentation intégrale. Toute application continue d’un espace compact totalement discontinu dans l’ensemble des mesures de probabilité sur un espace métrique complet est la résolvante d’une mesure de probabilité sur l’espace des applications continues de dans .
An integral representation theorem is proved. Each continuous function from a totally disconnected compact space to the probability measures on a complete metric space is shown to be the resolvent of a probability measure on the space of continuous functions from to .
@article{AIF_1970__20_2_193_0, author = {Blumenthal, Robert M. and Corson, Harry H.}, title = {On continuous collections of measures}, journal = {Annales de l'Institut Fourier}, volume = {20}, year = {1970}, pages = {193-199}, doi = {10.5802/aif.353}, mrnumber = {46 \#4184}, zbl = {0195.06102}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1970__20_2_193_0} }
Blumenthal, Robert M.; Corson, Harry H. On continuous collections of measures. Annales de l'Institut Fourier, Tome 20 (1970) pp. 193-199. doi : 10.5802/aif.353. http://gdmltest.u-ga.fr/item/AIF_1970__20_2_193_0/
[1] Harmonic Analysis and the Theory of Probability, University of Cal. Press, Berkeley (1955). | MR 17,273d | Zbl 0068.11702
,[2] Dimension Theory, Princeton University Press, Princeton, N.J. (1941). | JFM 67.1092.03 | MR 3,312b | Zbl 0060.39808
and ,[3] Representation of Functions in C(X) by Means of Extreme Points, PAMS 18 (1967), 133-135. | MR 34 #8167 | Zbl 0145.38102
,