Soit un compact d’un ouvert dans . On démontre l’existence d’un voisinage de qui satisfait la condition suivante : si est holomorphe sur et s’il existe une suite des polynomes qui approchent uniformément sur un voisinage ouvert de , il existe une suite de polynômes qui approchent uniformément sur
Let be an compact subset of an open set in . We show the existence of an open neighborhood of satisfying the following condition : if is holomorphic in and if there exists a sequence of polynomials which approximate uniformly in some open neighborhood of , there exists a sequence of polynomial which approximate uniformly in .
@article{AIF_1970__20_1_493_0, author = {Bj\"ork, Jan Erik}, title = {Every compact set in ${\bf C}^n$ is a good compact set}, journal = {Annales de l'Institut Fourier}, volume = {20}, year = {1970}, pages = {493-498}, doi = {10.5802/aif.348}, mrnumber = {41 \#7154}, zbl = {0188.39003}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1970__20_1_493_0} }
Björk, Jan Erik. Every compact set in ${\bf C}^n$ is a good compact set. Annales de l'Institut Fourier, Tome 20 (1970) pp. 493-498. doi : 10.5802/aif.348. http://gdmltest.u-ga.fr/item/AIF_1970__20_1_493_0/
[1] Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math. 9, 1-164 (1963). | MR 28 #2437 | Zbl 0124.31804
,[2] Analytic functions of several complex variables, Prentice Hall (1965). | Zbl 0141.08601
,