Nous désignons par l’opérateur de multiplication par dans l’espace de Hardy des séries des puissances à carré sommable. Dans ce travail, nous étudions l’opérateur adjoint (le “backward shift”). Soit le sous-espace cyclique engendré par , c’est-à-dire, le plus petit sous-espace fermé de qui contient . Si , s’appelle un vecteur cyclique pour . Théorème : est un vecteur cyclique si et seulement s’il existe une fonction , méromorphe et de caractéristique (nevanlinnienne) bornée dans la région . Une telle fonction s’appelle une “pseudo-continuation analytique” de . Notons aussi les résultats suivants. Si a une série des puissances avec des lacunes de Hadamard, alors est un vecteur cyclique. Si n’est pas un vecteur cyclique et si admet une continuation analytique sur un point de la frontière, alors toute fonction admet une continuation sur ce point. L’ensemble de tous les vecteurs non-cycliques est un ensemble dense du type de la première catégorie qui est un sous-espace vectoriel de . Enfin, nous étudions la relation entre les vecteurs cycliques et les fonctions “intérieures” de Beurling, et l’approximation par des fonctions rationnelles.
The operator of multiplication by on the Hardy space of square summable power series has been studied by many authors. In this paper we make a similar study of the adjoint operator (the “backward shift”). Let denote the cyclic subspace generated by , that is, the smallest closed subspace of that contains . If , then is called a cyclic vector for . Theorem : is a cyclic vector if and only if there is a function , meromorphic and of bounded Nevanlinna characteristic in the region , such that the radical limits of and coincide almost everywhere on the boundary Such a is called a “pseudo analytic continuation” of . Other results include the following. If has a power series with Hadamard gaps, then is a cyclic vector. If is not cyclic, and if can be continued analytically across some boundary point, then every function can be continued across this same point. The set of all the non-cyclic vectors is a dense set of the first category that is also a vector subspace of . In addition we study the relationship of cyclic vectors to inner functions, and to approximation by rational functions.
@article{AIF_1970__20_1_37_0, author = {Douglas, R. G. and Shapiro, H. S. and Shields, A. L.}, title = {Cyclic vectors and invariant subspaces for the backward shift operator}, journal = {Annales de l'Institut Fourier}, volume = {20}, year = {1970}, pages = {37-76}, doi = {10.5802/aif.338}, mrnumber = {42 \#5088}, zbl = {0186.45302}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1970__20_1_37_0} }
Douglas, R. G.; Shapiro, H. S.; Shields, A. L. Cyclic vectors and invariant subspaces for the backward shift operator. Annales de l'Institut Fourier, Tome 20 (1970) pp. 37-76. doi : 10.5802/aif.338. http://gdmltest.u-ga.fr/item/AIF_1970__20_1_37_0/
[1] Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950) 337-404. | MR 14,479c | Zbl 0037.20701
,[2] Théorie des opérations linéaires, Warszawa, 1932. | JFM 58.0420.01 | Zbl 0005.20901
,[3] On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949) 239-255. | Zbl 0033.37701
,[4] Lehrbuch der Funktionentheorie, Bd. II, Zweite Aufl., Leipzig, (1931). | JFM 57.0340.01 | Zbl 0001.21103
,[5] Analytische Fortsetzung, Ergeb. der Math., Neue Folge, Heft 3, Springer-Verlag, 1955. | Zbl 0064.06902
,[6] Entire Functions, Academic Press, New York, 1954. | MR 16,914f | Zbl 0058.30201
,[7] L'Intégrale de Fourier et questions qui s'y rattachent, Uppsala, 1944. | Zbl 0060.25504
,[8] Approximation by inner functions, Pac. J. Wath. 31 (1969) 313-320. | MR 40 #7814 | Zbl 0189.13803
and ,[9] On cyclic vectors of the backward shift, Bull. Amer. Math. Soc. 73 (1967) 156-159. | MR 34 #3316 | Zbl 0152.13902
, and ,[10] A Hilbert Space Problem Book, van Nostrand, Princeton, 1967. | MR 34 #8178 | Zbl 0144.38704
,[11] On the completeness of some systems of analytic functions, Uchen. Zapiski Rostov. Gos. Ped. Inst. N° 3 (1955) 53-58 (Russian). | Zbl 0068.28702
,[12] Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N. J., 1962. | Zbl 0117.34001
,[13] On sequences of remainders of Taylor series, Vyestnik Moskov, Univ. Ser. 1, 5 (1963) 35-46 (Russian). | Zbl 0119.29201
,[14] Hilbertsche Räume mit Kernfunktion, Springer, Berlin, 1962. | Zbl 0103.08802
,[15] On bounded bilinear forms, Ann. Math. 65 (1957), 153-162. | MR 18,633f | Zbl 0077.10605
,[16] Composition operators, Can. J. Math. 20 (1968) 442-449. | MR 36 #6961 | Zbl 0161.34703
,[17] On the one-dimensional translation group and semi-group in certain function spaces, Dissertation, Uppsala, 1950. | Zbl 0037.35401
,[18] Randeigenschaften Analytischer Funktionen, Zweite Aufl., Deutscher Verlag der Wiss., Berlin, 1956. | Zbl 0073.06501
,[19] Subordinate Hp functions, Duke J. Math. 33 (1966) 347-354. | MR 33 #289 | Zbl 0148.30205
,[20] Smoothness of the boundary function of a holomorphic function of bounded type, Ark. f. Mat. 7 (1968) 443-447. | MR 38 #4691 | Zbl 0165.40204
,[21] Overconvergence of sequences of rational functions with sparse poles, Ark. f. Mat. 7 (1967) 343-349. | MR 38 #4658 | Zbl 0159.41903
,[22] Generalized analytic continuation, Symposia on Theor. Phys. and Math. vol. 8, Plenum Press, New York (1968) 151-163. | MR 39 #2953 | Zbl 0181.35103
,[23] Functions nowhere continuable in a generalized sense, Publications of the Ramanujan Institute, vol. I, Madras (in press). | Zbl 0196.08704
,[24] Weighted polynomial approximation and boundary behavior of analytic functions, in “Contemporary Problems of the Theory of Analytic Functions”, Nauka, Moscow (1966) 326-335. | MR 35 #383 | Zbl 0174.36701
,[25] Weakly invertible elements in certain function spaces and generators in l1, Michigan Math. J. 11 (1964) 161-165. | MR 29 #3620 | Zbl 0133.37303
,[26] Analyse Harmonique des Opérateurs de l'Espace de Hilbert, Akademiai Kiado, Budapest, 1967. | MR 37 #778 | Zbl 0157.43201
and ,[27] Conditions for the convergence of the boundary values of analytic functions and approximation on rectifiable curves, in “Contemporary Problems of the Theory of Analytic Functions”, Nauka, Moscow (1966) 283-295 (Russian). | Zbl 0182.40404
,[28] Description of a class of functions approximable by rational functions with fixed poles, Izv. Akad. Nauk Armyanskoi SSR I, 1966, No. 2 pp. 89-105 (Russian). | Zbl 0182.40401
,[29] Convergent sequences of Blaschke products, Sibirsk Mat. Z. V (1964), 201-233 (Russian). | Zbl 0178.42002
,[30] Conditions for the uniform convergence and convergence of the boundary values of analytic and meromorphic functions of uniformly bounded characteristic, Mat. Z, V (1964), 387-417 (Russian). | Zbl 0141.07702
,