On dit qu’une structure feuilletée de dimension sur une variété différentiable se prolonge s’il existe une structure feuilletée de dimension sur telle que . Le résultat principal de cet article est que se prolonge sur les ensembles relativement compacts de sous les hypothèses que et soient orientables, que soit propre et que la classe d’Euler de s’annule.
A -dimensional foliation on a differentiable manifold is said to extend provided there exists a -dimensional foliation on with . Our main result asserts that if and extends over relatively compact subsets of .
@article{AIF_1969__19_2_155_0, author = {Smith, J. W.}, title = {Extending regular foliations}, journal = {Annales de l'Institut Fourier}, volume = {19}, year = {1969}, pages = {155-168}, doi = {10.5802/aif.325}, mrnumber = {42 \#1143}, zbl = {0176.21403}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1969__19_2_155_0} }
Smith, J. W. Extending regular foliations. Annales de l'Institut Fourier, Tome 19 (1969) pp. 155-168. doi : 10.5802/aif.325. http://gdmltest.u-ga.fr/item/AIF_1969__19_2_155_0/
[EDT] Elementary Differential Topology, revised edition, Annals of Math. Study 54, Princeton, N.J., (1966). | Zbl 0161.20201
,[1] Theory of Lie Groups, Princeton, (1946). | Zbl 0063.00842
,[2] Foundations of Algebraic Topology, Princeton, (1952). | MR 14,398b | Zbl 0047.41402
and ,[3] Fibre Bundles, McGraw-Hill, (1966). | MR 37 #4821 | Zbl 0144.44804
,[4] Lectures on Characteristic Classes, mimeographed notes, Princeton, (1957).
,[5] A Global Formulation of the Lie Theory of Transformation Groups, Amer. Math. Soc. Memoir 22, (1957). | MR 22 #12162 | Zbl 0178.26502
,[6] The Euler class of generalized vector bundles, Acta Math. 115 (1966), 51-81. | MR 32 #4704 | Zbl 0141.21002
,[7] Submersions of codimension 1, J. of Math. and Mech. 18 (1968), 437-444. | MR 38 #1689 | Zbl 0179.52004
,[8] Commuting vectorfields on open manifolds, Bull. Amer. Math. Soc., 15 (1969), 1013-1016. | MR 40 #2117 | Zbl 0179.52002
,[9] The topology of Fibre Bundles, Princeton, (1951). | MR 12,522b | Zbl 0054.07103
,