Algèbres de restrictions non isomorphes
Meyer, Yves
Annales de l'Institut Fourier, Tome 19 (1969), p. 117-124 / Harvested from Numdam

Les algèbres de restrictions des transformées de Fourier des fonctions intégrables à deux ensembles symétriques E et F arithmétiquement équivalents ne sont pas toujours isomorphes.

We give an example of two quotients of a group algebra which are not isomorphic but whose specters are two symmetric compact sets of the line with the same arithmetical properties.

@article{AIF_1969__19_1_117_0,
     author = {Meyer, Yves},
     title = {Alg\`ebres de restrictions non isomorphes},
     journal = {Annales de l'Institut Fourier},
     volume = {19},
     year = {1969},
     pages = {117-124},
     doi = {10.5802/aif.310},
     mrnumber = {40 \#7731},
     zbl = {0179.46402},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_1969__19_1_117_0}
}
Meyer, Yves. Algèbres de restrictions non isomorphes. Annales de l'Institut Fourier, Tome 19 (1969) pp. 117-124. doi : 10.5802/aif.310. http://gdmltest.u-ga.fr/item/AIF_1969__19_1_117_0/

[1] A. Beurling et H. Helson, Fourier-Stieltjes transforms with bounded powers, Math. Scand. 1, 120-126 (1953). | MR 15,307c | Zbl 0050.33004

[2] K. Deleeuw et Y. Katznelson, On certain homomorphisms of quotients of group algebras, Israël J. Math. 2, 120-126 (1964). | MR 30 #5183 | Zbl 0134.12502

[3] R. Salem, On sets of multiplicity for trigonometrical series, Amer. J. Math., 64, 531-538 (1942). | MR 4,38b | Zbl 0060.18603

[4] R. B. Schneider, Doctoral dissertation, Stanford University (1968).

[5] Séminaire Bourbaki de Février 1968, Problème de l'unicité, de la synthèse et des isomorphismes en analyse harmonique. | Zbl 0208.15403