Probability and a Dirichlet problem for multiply superharmonic functions
Walsh, John B.
Annales de l'Institut Fourier, Tome 18 (1968), p. 221-279 / Harvested from Numdam

Soit un préfaisceau complet de fonctions “harmoniques” définies sur W. Un critère de régularité pour les points des frontières idéales de W est donné. Pour chaque sous-treillis banachique de ℬℋ W , il existe une frontière idéale qui compactifie W et qui contient une “frontière harmonique” Γ qui est l’ensemble des points réguliers ; est isométriquement isomorphe à 𝒞(Γ ) Parmi des applications se trouvent les théories frontières de Wiener et Royden et aussi les classes comparables harmoniques.

@article{AIF_1968__18_2_221_0,
     author = {Walsh, John B.},
     title = {Probability and a Dirichlet problem for multiply superharmonic functions},
     journal = {Annales de l'Institut Fourier},
     volume = {18},
     year = {1968},
     pages = {221-279},
     doi = {10.5802/aif.299},
     zbl = {0172.38702},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_1968__18_2_221_0}
}
Walsh, John B. Probability and a Dirichlet problem for multiply superharmonic functions. Annales de l'Institut Fourier, Tome 18 (1968) pp. 221-279. doi : 10.5802/aif.299. http://gdmltest.u-ga.fr/item/AIF_1968__18_2_221_0/

[1] R. Arens and I. M. Singer, Function values as boundary integrals, Proc. Amer. Math. Soc. 5, (1954), 735-745. | MR 16,373f | Zbl 0056.33501

[2] V. Avanissian, Fonctions plurisousharmoniques et fonctions doublement sousharmoniques, Ann. Scient. Ec. Norm. Sup. 78 (1961), 101-161. | Numdam | MR 24 #A2052 | Zbl 0096.06103

[3] H. Bauer, Šilovcher Rand und Dirichletsches Problem, Ann. Inst. Fourier 11 (1961), 89-136. | Numdam | MR 25 #443 | Zbl 0098.06902

[4] S. Bergman, Functions of extended class in the theory of functions of several complex variables, Trans. Amer. Math. Soc. 63 (1948), 523-547. | MR 10,30b | Zbl 0034.05304

[5] D. Blackwell, On a class of probability spaces, Proc. Third Berkeley Symp. on Stat. and Prob. (1956), 1-6. | MR 18,940d | Zbl 0073.12301

[6] M. Brelot, Éléments de la théorie classique du potentiel, Centre de Documentation Universitaire, Paris 1961.

[7] M. Brelot, Le Problème de Dirichlet. Axiomatique et frontière de Martin ; J. de Math. 35 (1963), 297-334. | MR 20 #6607 | Zbl 0071.10001

[8] H. J. Bremermann, On the conjecture of equivalence of the plurisubharmonic functions and the Hartog functions, Math. Ann. 131 (1956), 76-86. | MR 17,1070h | Zbl 0070.07603

[9] H. J. Bremermann, Note on plurisubharmonic functions and Hartogs functions, Proc. Amer. Math. Soc. 7 (1956), 771-775. | MR 18,387f | Zbl 0071.29403

[10] H. J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains, Trans. Amer. Math. Soc. 91 (1956), 246-276. | MR 25 #227 | Zbl 0091.07501

[11] K. L. Chung and J. L. Doob, Fields, optionality and measurability, Amer. J. Math. 87 (1965), 397-424. | MR 35 #4972 | Zbl 0192.24604

[12] P. Courrège and P. Priouret, Axiomatique du problème de Dirichlet et processus de Markov, Seminaire Brelot, Choquet et Deny 1963/1964. | Numdam | Zbl 0132.33803

[13] P. Courrège and P. Priouret, Temps d'arrêt d'une fonction aléatoire : Relations d'équivalence associées et propriétés de décomposition, Publ. de l'Inst. de Statistique, Paris 14 (1965), 245-278. | MR 36 #4640 | Zbl 0287.60076

[14] P. Courrège and P. Priouret, Recollements de processus de Markov, Ibid., 275-376. | MR 36 #4641 | Zbl 0281.60075

[15] J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121. | MR 16,269a | Zbl 0059.12205

[16] J. L. Doob, A probability approach to the heat equation, Trans. Amer. Math. Soc. 80 (1955), 216-280. | MR 18,76g | Zbl 0068.32705

[17] J. L. Doob, Probability methods applied to the first boundary value problem, Proc. Third Berkeley Symp. on Stat. and Prob. (1956), 19-54. | MR 18,941a | Zbl 0074.09101

[18] J. L. Doob, Probability theory and the first boundary value problem, Ill. J. Math. 2 (1958), 19-36. | MR 21 #5242 | Zbl 0086.08403

[19] J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431-458. | Numdam | MR 22 #844 | Zbl 0097.34004

[20] J. Gorski, The method of extremal points and Dirichlet's problem in the space of two complex variables, Arch. Rat. Mech. Anal. 4 (1960), 412-427. | MR 22 #4894 | Zbl 0111.07902

[21] J. Gorski, Remark on a certain theorem of H. J. Bremermann, Ann. Pol. Math. 11 (1962), 225-227. | MR 25 #4125 | Zbl 0111.08101

[22] P. R. Halmos, Measure Theory, Van Nostrand, Princeton, 1950. | MR 11,504d | Zbl 0040.16802

[23] G. A. Hunt, Markov processes and potentials, I, II, III. Ill. J. Math. 1 (1957), 44-93, 316-369 ; Ibid. 2 (1958), 151-213. | Zbl 0100.13804

[24] N. Ikeda, M. Nagasawa and S. Watanabe, A construction of Markov processes by piecing out, Proc. Japan Acad. 42 (1966) 370-375. | MR 34 #2070 | Zbl 0178.53401

[25] S. Kakutani, Two dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. Tokyo 20 (1944), 706-714. | MR 7,315b | Zbl 0063.03107

[26] I. Kimura, Sur les fonctions plurisousharmoniques et les barriers, Proc. Japan Acad. 36 (1960), 639-643. | MR 23 #A3278 | Zbl 0100.07901

[27] H. Kunita and T. Watanabe, (to appear).

[28] Y. Kusunoki, On a generalized Dirichlet problem for plurisubharmonic functions, J. Math. Kyoto Univ. 4 (1964), 123-147. | MR 30 #4981 | Zbl 0158.12704

[29] F. Leja, Une méthode élémentaire de résolution de problème de Dirichlet dans le plan, Ann. Soc. Polon. Math. 23 (1950), 230-245. | MR 12,703h | Zbl 0039.32501

[30] P. Lelong, Les fonctions plurisousharmoniques, Ann. Soc. Ec. Norm. Sup. 62 (1945), 301-338. | Numdam | MR 8,271f | Zbl 0061.23205

[31] M. Loève, Probability Theory, Van Nostrand, Princeton, 1963. | MR 34 #3596 | Zbl 0108.14202

[32] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. | JFM 67.0343.03 | MR 2,292h | Zbl 0025.33302

[33] P. A. Meyer, Probability and Potentials, Blaisdell, 1966. | MR 34 #5119 | Zbl 0138.10401

[34] J. Siciak, On function families with boundary, Pac. J. Math. 12 (1962), 375-384. | MR 26 #1746 | Zbl 0106.08801

[35] J. Siciak, On some extremal functions and their applications to the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357. | MR 26 #1495 | Zbl 0111.08102