Soit une classe harmonique de Brelot, définie sur . Il est donné un critère de régularité en termes de barrières, pour les points d’une frontière idéale. Soit un sous-treillis banachique de . Si est hyperbolique, la frontière idéale compactifiante déterminée par contient une “frontière harmonique” qui satisfait le critère de régularité et . Entre autres applications, on a la théorie des frontières de Wiener et Royden et des comparaisons de classes harmoniques.
@article{AIF_1968__18_1_283_0, author = {Loeb, Peter and Walsh, Bertram}, title = {A maximal regular boundary for solutions of elliptic differential equations}, journal = {Annales de l'Institut Fourier}, volume = {18}, year = {1968}, pages = {283-308}, doi = {10.5802/aif.284}, mrnumber = {39 \#4423}, zbl = {0167.40302}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1968__18_1_283_0} }
Loeb, Peter; Walsh, Bertram. A maximal regular boundary for solutions of elliptic differential equations. Annales de l'Institut Fourier, Tome 18 (1968) pp. 283-308. doi : 10.5802/aif.284. http://gdmltest.u-ga.fr/item/AIF_1968__18_1_283_0/
[1] Lectures on Potential Theory, Tata Inst. of Fundamental Research, Bombay, 1960. | MR 118980 | MR 22 #9749 | Zbl 0098.06903
,[2] Ideale Ränder Riemannscher Flächen, Ergebnisse der Math. (2) 32 (1963). | MR 159935 | Zbl 0112.30801
and ,[3] Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1-57. | MR 174760 | MR 30 #4960 | Zbl 0138.36701
and ,[4] Concrete representation of abstract (M)-spaces, Ann. of Math. (2) 42 (1941), 994-1024. | MR 5778 | Zbl 0061.24209 | Zbl 0060.26604
,[5] An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 16,2 (1966), 167-208. | Numdam | MR 227455 | MR 37 #3039 | Zbl 0172.15101
,[6] A minimal compactification for extending continuous functions, Proc. Amer. Math. Soc. 18,2 (1967), 282-283. | MR 216468 | MR 35 #7301 | Zbl 0146.44503
,[7] The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 15 (1965), 597-600. | Numdam | MR 190360 | MR 32 #7773 | Zbl 0132.33802
and ,[8] Harmonic product and harmonic boundary for bounded complex-valued harmonic functions, Abstract 623-18, Notices Amer. Math. Soc. 12 (1965), 355.
,[9] Decompositions of operator algebras, I, Memoirs Amer. Math. Soc. 9 (1951). | MR 44749 | MR 13,472a | Zbl 0043.11505
,[10] The Feller and Šilov boundaries of a vector lattice, Illinois J. Math. 10 (1966), 680-693. | MR 34 #594 | Zbl 0143.15103
,[11] Nuclearity in axiomatic potential theory, Bull. Amer. Math. Soc. 72 (1966), 685-689. | MR 35 #407 | Zbl 0144.15503
and ,