Dans tout groupe abélien localement compact , il existe une mesure de Radon dont la transformée de Fourier tend vers zéro à l’infini et dont le support engendre dans un sous-groupe de mesure de Haar nulle.
@article{AIF_1966__16_2_123_0, author = {Varopoulos, Nicolas Th.}, title = {Sets of multiplicity in locally compact abelian groups}, journal = {Annales de l'Institut Fourier}, volume = {16}, year = {1966}, pages = {123-158}, doi = {10.5802/aif.238}, mrnumber = {35 \#3379}, zbl = {0145.03501}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1966__16_2_123_0} }
Varopoulos, Nicolas Th. Sets of multiplicity in locally compact abelian groups. Annales de l'Institut Fourier, Tome 16 (1966) pp. 123-158. doi : 10.5802/aif.238. http://gdmltest.u-ga.fr/item/AIF_1966__16_2_123_0/
[1] Livre VI Integration.
,[2] Michigan Math. J., 5, (1958), 149-158. | Zbl 0085.10003
,[3] Infinite Abelian Groups, The University of Michigan press.
,[4] Probability Theory, Van Nostrand. | Zbl 0095.12201
,[5] Fourier Stieltjes transforms of measures on independant sets, Bull. Amer. Math. Soc., 66 (1960). | Zbl 0099.32201
,[6] Fourier analysis on groups, Interscience tract, 12. | MR 27 #2808 | Zbl 0107.09603
,[7] On sets of multiplicity for trigonometric series, Amer. Journ. of Math., 64 (1942), 531-538. | MR 4,38b | Zbl 0060.18603
,[8] The functions that operate on B0 (Г) of a discrete group, Bull. Soc. Math. France, 93 (1965) (to appear). | Numdam | Zbl 0139.30801
,[9] Sur les mesures de Radon d'un groupe localement compact abélien, C.R. Acad. Sc. Paris, t. 260, 1059-1062 (1965). | Zbl 0134.12201
,