L’espace des fonctions analytiques bornées sur une région peut être muni de plusieurs topologies différentes. Deux topologies faibles sont étudiées ici. L’une est celle appelée topologie stricte et l’autre la topologie faible étoilée. Le principal outil nouveau est une espèce de balayage ou ramonage.
@article{AIF_1966__16_1_235_0, author = {Rubel, Lee A. and Shields, A. L.}, title = {The space of bounded analytic functions on a region}, journal = {Annales de l'Institut Fourier}, volume = {16}, year = {1966}, pages = {235-277}, doi = {10.5802/aif.231}, mrnumber = {33 \#6440}, zbl = {0152.13202}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1966__16_1_235_0} }
Rubel, Lee A.; Shields, A. L. The space of bounded analytic functions on a region. Annales de l'Institut Fourier, Tome 16 (1966) pp. 235-277. doi : 10.5802/aif.231. http://gdmltest.u-ga.fr/item/AIF_1966__16_1_235_0/
[1] Riemann Surfaces, Princeton (1960). | MR 22 #5729 | Zbl 0196.33801
and ,[2] Théorie des Opérations Linéaires, Warszawa-Lwow (1932). | JFM 58.0420.01 | Zbl 0005.20901
,[3] On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239-255. | MR 10,381e | Zbl 0033.37701
,[4] On absolutely convergent exponential sums, Trans. Amer. Math. Soc., 96 (1960), 162-183. | MR 26 #332 | Zbl 0096.05103
, and ,[5] Algebraic properties of classes of analytic functions, Seminars on Analytic Functions, vol. II, Princeton (1957), 175-188. | Zbl 0196.43603
,[6] Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559. | MR 25 #5186 | Zbl 0112.29702
,[7] On bounded analytic functions and closure problems, Ark. Mat. 2 (1952), 283-291. | MR 14,630d | Zbl 0047.35301
,[8] Elementary Theory of Analytic Functions of One or Several Complex Variables, Paris (1963). | MR 27 #4911 | Zbl 0121.30501
,[9] Linear Operators, Part I, New York (1958). | MR 22 #8302 | Zbl 0084.10402
and ,[10] On the space of bounded regular functions, Sibirsk. Mat. Z., 2 (1961), 622-638 (See also the abstract, under the same title, Dokl. Adak. Nauk SSSR, 131 (1960), 40-43, translated in Soviet Math., 1 (1960), 202-204). | Zbl 0174.12003
,[11] Divisibility properties of integral functions, Duke Math. J., 6 (1940), 38-47. | JFM 66.0105.02 | Zbl 0023.23904
,[12] Lectures on Invariant Subspaces, New York (1964). | MR 30 #1409 | Zbl 0119.11303
,[13] Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publications, 31 (1957). | MR 19,664d | Zbl 0078.10004
and ,[14] Banach Spaces of Analytic Functions, Englewood Cliffs (1962). | MR 24 #A2844 | Zbl 0117.34001
,[15] General Topology, New York (1955). | MR 16,1136c | Zbl 0066.16604
,[16] Linear Topological Spaces, Princeton (1963). | MR 29 #3851 | Zbl 0115.09902
, et al.,[17] Extreme points and extremum problems in H1, Pacific J. Math., 8 (1958), 467-485. | MR 20 #5426 | Zbl 0084.27503
and ,[18] Locally Multiplicatively-convex Topological Algebras, Mem. Amer. Math. Soc., 11 (1952). | MR 14,482a | Zbl 0047.35502
,[19] On certain extremum problems for analytic functions, Acta. Math., 90 (1953), 287-318. | MR 15,516a | Zbl 0051.05604
and ,[20] Bounded approximation by polynomials, Acta Math., 112 (1964), 145-162. | MR 30 #5104 | Zbl 0136.37404
and ,[21] Weak topologies on the bounded holomorphic functions, Bull. Amer. Math. Soc. (1965). | MR 30 #2364 | Zbl 0135.16903
and ,[22] Essential boundary points, Bull. Amer. Math. Soc. 70 (1964), 321-324. | MR 28 #3167 | Zbl 0133.03605
,[23] Banach spaces of functions analytic in the unit circle II, Studia Math., 12 (1951), 25-50. | MR 13,252a | Zbl 0042.35703
,[24] Sur les séries Σ Ak/z — αk, C. R. Acad. Sci. Paris, 173 (1921), 1057-1058, 1327-1328. | JFM 48.0320.01
,