Soit une variété munie d’une structure feuilletée de co-dimension un. On démontre plusieurs théorème relatifs à des conditions entraînant que le groupe d’holonomie et le pseudo-groupe d’holonomie d’une certaine feuille est infini.
@article{AIF_1965__15_2_201_0, author = {Sacksteder, Richard and Schwartz, Art J.}, title = {Limit sets of foliations}, journal = {Annales de l'Institut Fourier}, volume = {15}, year = {1965}, pages = {201-213}, doi = {10.5802/aif.213}, mrnumber = {32 \#6489}, zbl = {0136.20904}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_1965__15_2_201_0} }
Sacksteder, Richard; Schwartz, Art J. Limit sets of foliations. Annales de l'Institut Fourier, Tome 15 (1965) pp. 201-213. doi : 10.5802/aif.213. http://gdmltest.u-ga.fr/item/AIF_1965__15_2_201_0/
[1] On the global behavior of differential equations on two-dimensional manifolds, Proceedings of the American Mathematical Society, vol. 4 (1953), 630-636. | Zbl 0051.32404
,[2] Poincaré-Bendix type theorems for two-dimensional manifolds different from the torus, Annals of Mathematics, vol. 59 (1953), 292-299. | Zbl 0057.06902
,[3] Variétés feuilletées, Annali della Scuola Normale Superiore di Pisa, III, vol. CVI (1962), 367-397. | Numdam | Zbl 0122.40702
,[4] Regulare Kurvenscharen auf den Ringenflächen, Mathematische Annalen, vol. 91 (1924), 135-154. | JFM 50.0371.03
,[5] Qualitative Theory of Differential Equations, Princeton University Press (1960). | Zbl 0089.29502
and ,[6] Sur certaines propriétés topologiques des variétés feuilletées, Actualités Scientifiques et Industrielles, Hermann, Paris (1952). | Zbl 0049.12602
,[7] Foliations and pseudogroups, The American Journal of Mathematics, vol. 87 (1965), 79-102. | Zbl 0136.20903
,[8] A generalization of the Poincare-Bendixson theorem to closed two-dimensional manifolds, The American Journal of Mathematics, vol. 85 (1963), 453-458. | Zbl 0116.06803
,