Multiscale Testing of Qualitative Hypotheses
Dümbgen, Lutz ; Spokoiny, Vladimir G.
Ann. Statist., Tome 29 (2001) no. 2, p. 124-152 / Harvested from Project Euclid
Suppose that one observes a process Y on the unit interval, where dY(t) =n1/2 f(t)dt +dW (t) with an unknown function parameter f, given scale parameter n <=1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f such as monotonicity or concavity. These tests are asymptotically optimal and adaptive in a certain sense. They are constructed via a new class of multiscale statistics and an extension of Lévy's modulus of continuity of Brownian motion.
Publié le : 2001-02-14
Classification:  adaptivity,  concavity,  Lévy's modulus of continuity,  monotonicity,  multiple test,  nonparametric,  positivity,  62G10,  62G20
@article{996986504,
     author = {D\"umbgen, Lutz and Spokoiny, Vladimir G.},
     title = {Multiscale Testing of Qualitative Hypotheses},
     journal = {Ann. Statist.},
     volume = {29},
     number = {2},
     year = {2001},
     pages = { 124-152},
     language = {en},
     url = {http://dml.mathdoc.fr/item/996986504}
}
Dümbgen, Lutz; Spokoiny, Vladimir G. Multiscale Testing of Qualitative Hypotheses. Ann. Statist., Tome 29 (2001) no. 2, pp.  124-152. http://gdmltest.u-ga.fr/item/996986504/