Dynamical correlation functions for an impenetrable Bose gas with Neumann or Dirichlet boundary conditions
Kojima, Takeo
arXiv, 9901024 / Harvested from arXiv
We study the time and temperature dependent correlation functions for an impenetrable Bose gas with Neumann or Dirichlet boundary conditions $\langle \psi(x_1,0)\psi^\dagger(x_2,t)\rangle _{\pm,T}$. We derive the Fredholm determinant formulae for the correlation functions, by means of the Bethe Ansatz. For the special case $x_1=0$, we express correlation functions with Neumann boundary conditions $\langle\psi(0,0)\psi^\dagger(x_2,t)\rangle _{+,T}$, in terms of solutions of nonlinear partial differential equations which were introduced in \cite{kojima:Sl} as a generalization of the nonlinear Schr\"odinger equations. We generalize the Fredholm minor determinant formulae of ground state correlation functions $\langle\psi(x_1)\psi^\dagger(x_2)\rangle _{\pm,0}$ in \cite{kojima:K}, to the Fredholm determinant formulae for the time and temperature dependent correlation functions $\langle\psi(x_1,0)\psi^\dagger(x_2,t)\rangle _{\pm,T}$, $t \in {\bf R}$, $T \geq 0$.
Publié le : 1998-12-31
Classification:  Mathematical Physics
@article{9901024,
     author = {Kojima, Takeo},
     title = {Dynamical correlation functions for an impenetrable Bose gas with
  Neumann or Dirichlet boundary conditions},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9901024}
}
Kojima, Takeo. Dynamical correlation functions for an impenetrable Bose gas with
  Neumann or Dirichlet boundary conditions. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9901024/