PU(2) monopoles and a conjecture of Marino, Moore, and Peradze
Feehan, Paul M. N. ; Kronheimer, Peter B. ; Leness, Thomas G. ; Mrowka, Tomasz S.
arXiv, 9812125 / Harvested from arXiv
In this article we show that some of the recent results of Marino, Moore, and Peradze (math.DG/9812042, hep-th/9812055) -- in particular their conjecture that all closed, smooth four-manifolds with b_2^+ > 1 (and Seiberg-Witten simple type) are of `superconformal simple type' -- can be understood using a simple mathematical argument via the PU(2)-monopole cobordism of Pidstrigach and Tyurin (dg-ga/9507004) and results of the first and third authors (dg-ga/9712005, dg-ga/9709022).
Publié le : 1998-12-21
Classification:  Mathematics - Differential Geometry,  High Energy Physics - Theory,  Mathematical Physics,  Mathematics - Algebraic Geometry,  Mathematics - Geometric Topology
@article{9812125,
     author = {Feehan, Paul M. N. and Kronheimer, Peter B. and Leness, Thomas G. and Mrowka, Tomasz S.},
     title = {PU(2) monopoles and a conjecture of Marino, Moore, and Peradze},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9812125}
}
Feehan, Paul M. N.; Kronheimer, Peter B.; Leness, Thomas G.; Mrowka, Tomasz S. PU(2) monopoles and a conjecture of Marino, Moore, and Peradze. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9812125/