Semiclassical Dynamics with Exponentially Small Error Estimates
Hagedorn, George A. ; Joye, Alain
arXiv, 9812025 / Harvested from arXiv
We construct approximate solutions to the time--dependent Schr\"odinger equation $i \hbar (\partial \psi)/(\partial t) = - (\hbar^2)/2 \Delta \psi + V \psi$ for small values of $\hbar$. If $V$ satisfies appropriate analyticity and growth hypotheses and $|t|\le T$, these solutions agree with exact solutions up to errors whose norms are bounded by $C \exp{-\gamma/\hbar}$, for some $C$ and $\gamma>0$. Under more restrictive hypotheses, we prove that for sufficiently small $T', |t|\le T' |\log(\hbar)|$ implies the norms of the errors are bounded by $C' \exp{-\gamma'/\hbar^{\sigma}}$, for some $C', \gamma'>0$, and $\sigma>0$.
Publié le : 1998-12-23
Classification:  Mathematical Physics,  81Q05
@article{9812025,
     author = {Hagedorn, George A. and Joye, Alain},
     title = {Semiclassical Dynamics with Exponentially Small Error Estimates},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9812025}
}
Hagedorn, George A.; Joye, Alain. Semiclassical Dynamics with Exponentially Small Error Estimates. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9812025/