Eigenvalue bounds for a class of singular potentials in N dimensions
Hall, Richard L. ; Saad, Nasser
arXiv, 9811008 / Harvested from arXiv
The eigenvalue bounds obtained earlier [J. Phys. A: Math. Gen. 31 (1998) 963] for smooth transformations of the form V(x) = g(x^2) + f(1/x^2) are extended to N-dimensions. In particular a simple formula is derived which bounds the eigenvalues for the spiked harmonic oscillator potential V(x) = x^2 + lambda/x^alpha, alpha > 0, lambda > 0, and is valid for all discrete eigenvalues, arbitrary angular momentum ell, and spatial dimension N.
Publié le : 1998-11-03
Classification:  Quantum Physics,  Mathematical Physics
@article{9811008,
     author = {Hall, Richard L. and Saad, Nasser},
     title = {Eigenvalue bounds for a class of singular potentials in N dimensions},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9811008}
}
Hall, Richard L.; Saad, Nasser. Eigenvalue bounds for a class of singular potentials in N dimensions. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9811008/