Categorial mirror symmetry for K3 surfaces
Bartocci, C. ; Bruzzo, U. ; Sanguinetti, G.
arXiv, 9811004 / Harvested from arXiv
We study the structure of a modified Fukaya category ${\frak F}(X)$ associated with a K3 surface $X$, and prove that whenever $X$ is an elliptic K3 surface with a section, the derived category of $\fF(X)$ is equivalent to a subcategory of the derived category ${\bold D}(\hat X)$ of coherent sheaves on the mirror K3 surface $\hat X$.
Publié le : 1998-11-05
Classification:  Mathematical Physics,  High Energy Physics - Theory,  Mathematics - Algebraic Geometry
@article{9811004,
     author = {Bartocci, C. and Bruzzo, U. and Sanguinetti, G.},
     title = {Categorial mirror symmetry for K3 surfaces},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9811004}
}
Bartocci, C.; Bruzzo, U.; Sanguinetti, G. Categorial mirror symmetry for K3 surfaces. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9811004/