Von Neumann Betti numbers and Novikov type inequalities
Farber, Michael
arXiv, 9810114 / Harvested from arXiv
It is shown that the Novikov inequalities for critical points of closed 1-forms hold with the von Neumann Betti numbers replacing the Novikov numbers. As a corollary we obtain a vanishing theorem for $L^2$ cohomology, generalizing a theorem of W. Lueck. We also prove that von Neumann Betti numbers coincide with the Novikov numbers for free abelian coverings.
Publié le : 1998-10-18
Classification:  Mathematics - Differential Geometry,  Mathematical Physics,  Mathematics - Algebraic Topology,  Mathematics - Representation Theory,  Mathematics - Symplectic Geometry
@article{9810114,
     author = {Farber, Michael},
     title = {Von Neumann Betti numbers and Novikov type inequalities},
     journal = {arXiv},
     volume = {1998},
     number = {0},
     year = {1998},
     language = {en},
     url = {http://dml.mathdoc.fr/item/9810114}
}
Farber, Michael. Von Neumann Betti numbers and Novikov type inequalities. arXiv, Tome 1998 (1998) no. 0, . http://gdmltest.u-ga.fr/item/9810114/